Optical Properties and Electronic Characteristics of Polycrystalline and Amorphous Thin Films of the Al4Sm Alloy
https://doi.org/10.47612/0514-7506-2023-90-1-35-42
Abstract
The optical properties and electronic characteristics of X-ray amorphous and polycrystalline Al4Sm alloy films obtained by vacuum thermal evaporation were studied. The optical constants were measured by the Beattie ellipsometric method in the range of 0.248–7.002 µm. From the spectral dependencies of optical constants, the dispersion dependences of the light conductivity σ, reflectivity R, imaginary and real parts of the dielectric permittivity ε1 and ε2 and functions of characteristic energy loss of electrons Im(ε)–1 were calculated. The effect of the crystal structure of the alloys on the features of their optical spectra was shown. Based on the results of measurements in the infrared region of the spectrum, the electronic characteristics of these alloys were calculated using the two-band conductivity model.
About the Authors
L. A. AkashevRussian Federation
Ekaterinburg
N. A. Popov
Russian Federation
Ekaterinburg
A. A. Makhnev
Russian Federation
Ekaterinburg
E. S. Vorontsova
Russian Federation
Ekaterinburg
V. G. Shevchenko
Russian Federation
Ekaterinburg
References
1. Y. He, G.M. Dougherty, G. J. Shiflet, S. J. Poon. Acta Metall, Mater., 41, N 2 (1993) 337—343, https://doi.org/10.1016/0956-7151(93)90064-Y
2. V. Jambur, C. Tangpatjaroen, J. Xi, J. Tarnsangpradit, M. Gao, H. Sheng, J. H. Perepezko, I. Szlufarska. J. Alloys Compd., 854 (2021) 157266, https://doi.org/10.1016/j.jallcom.2020.157266
3. A. Inoue, T. Masumoto. J. Alloys Compd., 207-208 (1994) 340—348, https://doi.org/10.1016/0925-8388(94)90237-2
4. C. A. Schuh, T. C. Hufnagel, U. Ramamurty. Acta Mater., 55 (2007) 4067—4109, https://doi.org/10.1016/j.actamat.2007.01.052
5. J. M. Freitag, R. G. Koknaev, R. SabetSharghi, M. Koknaeva, Z. Altounian. J. Appl. Phys., 79 (1996) 3967—3970, http://dx.doi.org/10.1063/1.361824
6. A. L. Greer, K. L. Rutherford, I. M. Hutchings. Int. Mater. Rev., 47, N 2 (2002) 87—112, https://doi.org/10.1179/095066001225001067
7. Y. G. Wang, Y. J. Li, S. P. Pan, B. D. Fu, J. Y. Qin, W. M. Wang. Int. J. Electrochem. Sci., 11 (2016) 3512—3531, doi: 10.20964/110429
8. A. Inoue. Progr. Mater. Sci., 43 (1998) 365—520, https://doi.org/10.1016/S0079-6425(98)00005-X
9. F. Meng, Y. Sun, F. Zhang, B. Da, C. Wang, M. J. Kramer, K. Ho, D. Sun. Phys. Rev. Mater., 5 (2021) 0434021—0434028, doi: 10.1103/PhysRevMaterials.5.043402
10. P. Rizzi, M. Baricco, L. Battezzati, P. Schumacher, A. L. Greer. Mater. Sci. Forum, 195 (1995) 111—116, https://doi.org/10.4028/www.scientific.net/MSF.195.111
11. Y. E. Kalay, L. S. Chumbley, I. E. Anderson. J. Non-Crystal. Solids, 354 (2008) 3040—3048, https://doi.org/10.1016/j.jnoncrysol.2007.12.006
12. J. Q. Guo, K. Ohtera, K. Kita, J. Nagahora, N. S. Kazama. Mater. Lett., 24 (1995) 133—138, https://doi.org/10.1016/0167-577X(95)00066-6
13. F. Q. Meng, S. H. Zhou, R. T. Ott, M. J. Kramer, R. E. Napolitano. Material, 9 (2020) 100595, https://doi.org/10.1016/j.mtla.2020.100595
14. N. Wang, Y. E. Kalay, R. Trivedi. Acta Mater., 59 (2011) 6604—6619, https://doi.org/10.1016/j.actamat.2011.07.015
15. Z. Ye, F. Zhang, Y. Sun, M. I. Mendelev, R. T. Ott, E. Park, M. F. Besser, M. J. Kramer, Z. Ding, C.-Z. Wang, K.-M. Ho. Appl. Phys. Lett., 106 (2015) 1019031(1—4), https://doi.org/10.1063/1.4914399
16. S. H. Zhou, F. Q. Meng, M. J. Kramer, R. T. Ott, F. Zhang, Z. Ye, S. Jain, R. E. Napolitano. Mater. Today Commun., 21 (2019) 100673, https://doi.org/10.1016/j.mtcomm.2019.100673
17. L. Zhao, G. B. Bokas, J. H. Perepezko, I. Szlufarska. Acta Mater., 142 (2018) 1—7, https://doi.org/10.1007/s10853-018-2393-2
18. M. Pont, T. Puig, K. V. Rao, A. Inoue. J. Appl. Phys., 71 (1992) 4991, https://doi.org/10.1063/1.350598
19. L. Battezzati, M. Baricco. Mater. Sci. Eng. A, 179/A-180 (1994) 600—604, https://doi.org/10.1016/0921-5093(94)90275-5
20. А. И. Киселев, Л. А. Акашев, Н. А. Попов. Физикохимия поверхности и защита материалов, 58, № 2 (2022) 189—198 [A. I. Kiselev, L. A. Akashev, N. A. Popov. Protection of Metals and Phys. Chem. Surfaces, 58, N 2 (2022) 308—317], https://doi.org/10.1134/S2070205122020083, https://sciencejournals.ru/view-article/?j=zamet&y=2022&v=58&n=2&a=ZaMet2202008Kiselev
21. А. В. Ржанов. Основы эллипсометрии, Новосибирск, Наука (1979) 61—66
22. L. A. Akashev, V. I. Kononenko, V. E. Sidorov, P. Svec, D. Janickovic. J. Phys.: Conf. Ser., 98, 062012 (2008) 1—4, https://iopscience.iop.org/article/10.1088/1742-6596/98/6/062012
23. Л. А. Акашев, Н. А. Попов, В. Г. Шевченко. Журн. прикл. спектр., 85, № 4 (2018) 570—575 [L. A. Akashev, N. A. Popov, V. G. Shevchenko. J. Appl. Spectr., 85, N 4 (2018) 624—629], https://zhps.ejournal.by/jour/article/view/282, https://doi.org/10.1007/s10812-018-0696-3
24. Л. А. Акашев, Н. А. Попов, В. Г. Шевченко. Журн. прикл. спектр., 87, № 1 (2020) 154—162 [L. A. Akashev, N. A. Popov, V. G. Shevchenko. J. Appl. Spectr., 87 (2020) 134—142], https://zhps.ejournal.by/jour/article/view/465, https://doi.org/10.1007/s10812-020-00974-8
25. Л. А. Акашев, Н. А. Попов, В. Г. Шевченко. Опт. и спектр., 129, вып. 7 (2021) 848—856 [L. A. Akashev, N. A. Popov, V. G. Shevchenko. Opt. and Spectr., 129 (2021) 881—889], http://dx.doi.org/10.21883/OS.2021.07.51075.1614-21
Review
For citations:
Akashev L.A., Popov N.A., Makhnev A.A., Vorontsova E.S., Shevchenko V.G. Optical Properties and Electronic Characteristics of Polycrystalline and Amorphous Thin Films of the Al4Sm Alloy. Zhurnal Prikladnoii Spektroskopii. 2023;90(1):35-42. (In Russ.) https://doi.org/10.47612/0514-7506-2023-90-1-35-42