Determination of Total Column of Trichlorofluoromethane in the Atmosphere Taking Account the Effect of Amorphous Water Ice Sediment on the Spectrometer Detector
https://doi.org/10.47612/0514-7506-2023-90-1-74-79
Abstract
A ground-based spectroscopic method for determining CCl3F content from measurements of IR-spectra of solar radiation using an IFS-125HR Fourier Spectrometer (FTIR method) is considered. The detector based on mercury-cadmium-tellurium (HgCaTe), which is used for measurements in the CCl3F absorption spectral region, is cooled by liquid nitrogen. When the vacuum gradually deteriorates in the metal Dewar vessel of the receiver during cooling, the amorphous ice film grows on the detector. The spectral absorption band of amorphous ice at liquid nitrogen temperatures overlaps the CCl3F absorption band, and the ice film thickness variability adds additional uncertainty to the estimates of the CCl3F atmospheric content. To eliminate this uncertainty, a technique has been developed to estimate the thickness of the ice film and to account for its spectral absorption in the algorithm of solving the reverse problem. The technique has been applied when measuring the atmospheric concentration of CCl3F in 2017—2019 over the NDACC station, St.Petersburg. The results have been compared with ones obtained earlier using a technique in which the thickness of the ice film was adopted by an unknown parameter specified in the process of solving the inverse problem. The previously obtained CCl3F atmospheric content has been refined using the proposed technique; the difference reaches 10%.
About the Authors
A. V. PolyakovRussian Federation
St. Petersburg
A. L. Nikulina
Russian Federation
St. Petersburg
A. V. Poberovsky
Russian Federation
St. Petersburg
D. A. Kozlov
Russian Federation
Moscow
M. V. Makarova
Russian Federation
St. Petersburg
Ya. A. Virolainen
Russian Federation
St. Petersburg
References
1. M. Molina, F. Rowland. Nature, 249 (1974) 810—812, https://doi.org/10.1038/249810a0
2. WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion, Global Ozone Research and Monitoring, Geneva, Switzerland, Project–Report, N 58 (2018) 588
3. S. A. Montzka, G. S. Dutton, P. Yu, E. Ray, R. W. Portmann, J. S. Daniel, L. Kuijpers, B. D. Hall, D. Mondeel, C. Siso, J. D. Nance, M. Rigby, A. J. Manning, L. Hu, F. Moore, B. R. Miller, J. W. Elkins. Nature, 557 (2018) 413—417, https://doi.org/10.1038/s41586-018-0106-2
4. P. F. Bernath, J. Steffen, J. Crouse, C. D. Boone. J.Q.S.R.T., 253 (2020) 107178, https://doi.org/10.1016/j.jqsrt.2020.107178
5. M. Ko, P. Newman, S. Reimann, S. Strahan, R. Plumb, R. Stolarski, J. Burkholder, W. Mellouki, A. Engel, E. Atlas. SPARC Rep., N 6 (2013) WCRP-15/2013
6. http://www.ndaccdemo.org
7. Yu. Timofeyev, Ya. Virolainen, M. Makarova, A. Poberovsky, A. Polyakov, D. Ionov, S. Osipov, H. Imhasin. J. Mol. Spectr., 323 (2016) 2—14
8. A. Polyakov, A. Poberovsky, M. Makarova, Y. Virolainen, Y. Timofeyev, A. Nikulina. Atm. Measur. Tech., 14 (2021) 5349—5368, https://doi.org/10.5194/amt-14-5349-2021
9. F. Hase, J. W. Hannigan, M. T. Coffey, A. Goldman, M. Höpfner, N. B. Jones, C. P. Rinsland, S. W. Wood. J.Q.S.R.T., 87, N 1 (2004) 25—52, doi: 10.1016/j.jqsrt.2003.12.008
10. M. Zhou, C. Vigouroux, B. Langerock, P. Wang, G. Dutton, C. Hermans, N. Kumps, J.-M. Metzger, G. Toon, M. De Mazière. Atm. Measur. Tech., 9 (2016) 5621—5636, https://doi.org/10.5194/amt-9- 5621-2016
11. А. В. Поляков, А. В. Поберовский, Я. А. Виролайнен, М. В. Макарова. Журн. прикл. спектр., 87, № 1 (2020) 108—115 [A. V. Polyakov, A. V. Poberovsky, Y. A. Virolainen, M. V. Makarova. J. Appl. Spectr., 87, N 1 (2020) 92—98], https://doi.org/10.1007/s10812-020-00968-6
12. E. J. Mlawer, V. H. Payne, J. L. Moncet, J. S. Delamere, M. J. Alvarado, D. D. Tobin. Philos. T. r. soc. A, 370 (2012) 1—37, https://doi.org/10.1098/rsta.2011.0295
13. Y. A. Virolainen, Y. M. Timofeyev, V. S. Kostsov, D. V. Ionov, V. V. Kalinnikov, M. V. Makarova, A. V. Poberovsky, N.A. Zaitsev, H. H. Imhasin, A. V. Polyakov, M. Schneider, F. Hase, S. Barthlott, T. Blumenstock. Atm. Measur. Tech., 10 (2017) 4521—4536, https://doi.org/10.5194/amt-10-4521-2017
14. D. M. Hudgins, S. A. Sandford, L. J. Allamandola, A. G. G. M. Tielens. Astrophys. J. Suppl. S, 86 (1993) 713—870, doi: 10.1086/191796
Review
For citations:
Polyakov A.V., Nikulina A.L., Poberovsky A.V., Kozlov D.A., Makarova M.V., Virolainen Ya.A. Determination of Total Column of Trichlorofluoromethane in the Atmosphere Taking Account the Effect of Amorphous Water Ice Sediment on the Spectrometer Detector. Zhurnal Prikladnoii Spektroskopii. 2023;90(1):74-79. (In Russ.) https://doi.org/10.47612/0514-7506-2023-90-1-74-79