

Implementation of Line Search for PARAFAC Analysis of Fluorescence Excitation-Emission Matrix
https://doi.org/10.47612/0514-7506-2023-90-1-90-96
Abstract
Recovery of fluorophore groups in dissolved organic matter using the PARAFAC canonical tensor decomposition of fluorescence excitation-emission matrix (EEM) is widely used in the study of natural waters. However, fitting the PARAFAC model, especially for its validation, is very time consuming. Several strategies for accelerating the PARAFAC fitting to the EEM of sea waters were considered. It was shown that strategies with optimization of a large set of hyperparameters do not result in significant acceleration due to high time costs for this operation. It was proposed to perform optimization for one variable once for several iterations of the algorithm. This approach made it possible to achieve acceleration of calculations using line search strategy. The maximum acceleration by 2.3 times was achieved for the line search strategy using the extrapolation step in a power function of the iteration number, although in this case, sequential steps are collinear at some stages of the algorithm.
About the Authors
I. N. KrylovRussian Federation
Moscow
I. V. Seliverstova
Russian Federation
Moscow
T. A. Labutin
Russian Federation
Moscow
References
1. R. M. Cory, D. M. McKnight. Environ. Sci. Technol., 39, N 21 (2005) 8142—8149
2. C. A. Stedmon, S. Markager, R. Bro. Marine Chem., 82, N 3-4 (2003) 239—254
3. О. Е. Родионова, А. Л. Померанцев. Успехи химии, 75, № 4 (2006) 302—321
4. R. Bro. Chemometrics Intell. Lab. Systems, 38, N 2 (1997) 149—171
5. C. M. Andersen, R. Bro. J. Chemometrics, 17, N 4 (2003) 200—215
6. C. A. Stedmon, R. Bro. Limnology and Oceanography: Methods, 6, N 11 (2008) 572—579
7. C. J. Hillar, L.-H. Lim. J. ACM, 60, N 6 (2013) 45(1—39)
8. W. S. DeSarbo. An Application of PARAFAC to a Small Sample Problem, Demonstrating Preprocessing, Orthogonality Constraints, and Split-Half Diagnostic Techniques (Appendix), Rochester, New York, Social Science Research Network (1984)
9. I. N. Krylov, A. N. Drozdova, T. A. Labutin. Chemometrics Intell. Lab. Systems, 207 (2020) 104176
10. F. L. Hitchcock. J. Mathem. Phys., 6, N 1-4 (1927) 164—189
11. В. С. Муха. Изв. НАН Беларуси. Сер. физ.-мат. наук, 50, № 2 (2016) 71—81
12. В. С. Муха. Изв. НАН Беларуси. Сер. физ.-мат. наук, 50, № 4 (2016) 53—60
13. R. Bro. Multi-way Analysis in the Food Industry, The Netherlands, University of Amsterdam (1998)
14. C. Paulick, M. N. Wright, R. Verleger, K. Keller. Chemometrics Intell. Lab. Systems, 137 (2014) 97—109
15. P. Comon, X. Luciani, A. L. F. de Almeida. J. Chemometrics, 23, N 7-8 (2009) 393—405
16. R. A. Harshman. UCLA Working Papers in Phonetics, 16 (1970) 1—84
17. M. Rajih, P. Comon, R. A. Harshman. SIAM J. Matrix Analysis and Applications, 30, N 3 (2008) 1128—1147
18. N. E. Helwig. Multiway: Component Models for Multi-Way Data, https://CRAN.R-project.org/package=multiway (дата обращения 24.06.2022)
19. W. S. Cleveland, S. J. Devlin. J. Am. Statist. Ass., 83, N 403 (1988) 596—610
20. R. H. Byrd, P. Lu, J. Nocedal, C. Zhu. SIAM J. Sci. Comp., 16, N 5 (1995) 1190—1208
21. R. P. Brent. Algorithms for Minimization without Derivatives, Mineola, New York, Dover Publications (2002)
22. C. A. Andersson, R. Bro. Chemometrics Intell. Lab. Systems, 52, N 1 (2000) 1—4
23. K. R. Murphy, C. A. Stedmon, D. Graeber, R. Bro. Anal. Methods, 5, N 23 (2013) 6557
24. A. Zsolnay, E. Baigar, M. Jimenez, B. Steinweg, F. Saccomandi. Chemosphere, 38, N 1 (1999) 45—50
25. A. N. Drozdova, I. N. Krylov, A. A. Nedospasov, E. G. Arashkevich, T. A. Labutin. Front. Marine Sci., 9 (2022)
Review
For citations:
Krylov I.N., Seliverstova I.V., Labutin T.A. Implementation of Line Search for PARAFAC Analysis of Fluorescence Excitation-Emission Matrix. Zhurnal Prikladnoii Spektroskopii. 2023;90(1):90-96. (In Russ.) https://doi.org/10.47612/0514-7506-2023-90-1-90-96