Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Spectroscopic Analysis of the Zinc Ion Interaction with Horseradish Peroxidase

Abstract

The purpose of the current study was to evaluate the interaction between zinc ions and horseradish peroxidase (HRP) by ultraviolet-visible, fluorescence, circular dichroism, and FTIR spectroscopies. HRP conformation analysis revealed a noticeable decrease in α-helix from 47% for the free enzyme to 17% for HRP–Zn2+ and a reduction in tertiary structures of the enzyme through a Zn2+ interaction. Moreover, the fluorescence intensity of HRP was decreased significantly by Zn2+. The linear relationship of HRP emission data and inhibitor concentration indicated that the extinction process is linear and occurs uniformly with increasing Zn2+ concentration. The values of Kq for the zinc and HRP interaction were in the order of 1011 l/mol, which means that HRP fluorescence was quenched by Zn2+ through a static quenching mechanism. 

About the Authors

N. H. Shirazi
Department of Biology, Roudehen Branch, Islamic Azad University
Islamic Republic of Iran

Roudehen



M. R. Rajabi
Department of Biology, Roudehen Branch, Islamic Azad University
Islamic Republic of Iran

Roudehen



References

1. X. Zhao, J. Huang, J. Lu, Y. Sun, Ecotoxic. Environ. Safety, 170, 218–226 (2019).

2. N. Bolan, A. Kunhikrishnan, R. Thangarajan, J. Kumpiene, J. Park, T. Makino, J. Hazard Mater., 266, 141–166 (2014).

3. J. Rahmani, Y. Fakhri, A. Shahsavani, Z. Bahmani, M. A. Urbina, S. Chirumbolo, H. Keramati, B. Moradi, A. Bay, G. Bjørklund, Food Chem. Toxic., 118, 753–765 (2018).

4. A. E. Belyaeva, N. L. Saris, Biochem. Res. Int., 1–13 (2011).

5. F. Minibayeva, R. P. Beckett, I. Kranner, Phytochemistry, 112, 122–129 (2015).

6. A. A. Khan, A. H. Rahmani, Y. H. Aldebasi, Glob. J. Health Sci., 6, 87–98 (2014).

7. H. Nunavath, C. Banoth, V. R. Talluri, B. Bhukya, Bioinformation, 12, 318–323 (2016).

8. V. Hooda, P. B. Gundala, P. Chinthala, Bioinformation, 8, 974–979 (2012).

9. Y. Wang, Z. Ye, J. Li, Y. Zhang, Y. Guo, J. H. Cheng, LWT, 141, 111078 (2021).

10. J. Sun, J. Zhao, L. Wang, H. Li, F. Yang, X. Yang, ACS Sensors, 3, No. 1, 183–190 (2018).

11. S. Zhang, Z. Zheng, C. Zheng, Y. Zhao, Z. Jiang, Food Chem., 379, 132142 (2022).

12. V. P. Pandey, M. Awasthi, S. Singh, S. Tiwari, U. N. Dwivedi, Biochem. Anal. Biochem., 6, 308–324 (2017).

13. K. V. S. K. Prasad, S. P. Paradha, P. Sharmila, Environ. Exp. Bot., 42, 1–10 (1998).

14. G. I. Sat, Afr. J. Biotech., 7, 2248–2253 (2008).

15. S. O. Malomo, R. I. Adeoye, L. Babatunde, I. A. Saheed, M. O. Iniaghe, F. J. Olorunniji, Biochemistry, 23, No. 3, 1–5 (2019).

16. R. K. Behera, S. Goyal, S. Mazumdar, J. Inorg. Biochem., 104, No. 11, 1185–1194 (2010).

17. L. Mao, S. Luo, Q. Huang, Glycol. Sci. Rep., 3, 3126 (2013).

18. N. Hadizadeh Shirazi, J. Food Biochem., e12724 (2018).

19. N. Hadizadeh Shirazi, B. Ranjbar, K. H. Hajeh, Tohidi, Int. J. Biol. Macromol., 54, 180–185 (2013).

20. K. Bamdad, B. Ranjbar, H. Naderi-Manesh, M. Sadeghi, EXCLI J., 13, 611–622 (2014).

21. H. Alsamamra, I. Khalid, R. Alfaqeh, M. Farroun, M. Abuteir, J. Biomed. Sci., 7, 1–8 (2018).

22. V. D. Suryawanshi, L. S. Walekar, A. H. Gore, P. V. Anbhule, G. B. Kolekar, J. Pharm. Anal., 6, 56–63 (2016).

23. C. L. Nnamchi, G. Parkin, I. Efimov, J. Biol. Inorg. Chem., 21, 2163–2170 (2016).

24. R. A. Bozym, F. Chimienti, L. J. Giblin, G. W. Gross, I. Korichneva, Y. Li, S. Libert, W. Maret, M. Parviz, C. J. Frederickson, R. B. Thompson, Exp. Biol. Med., 235, No. 6, 741–750 (2010).

25. S. Zhang, Z. Zheng, C. Zheng, Y. Zhao, Z. Jiang, Food Chem., 379, 132–142 (2022).

26. M. S. Al-Bagmi, M. S. Khan, M. A. Ismael, A. M. Al-Senaidy, A. B. Bacha, F. M. Husain, S. F. Alamery, Saudi J. Biol. Sci., 26, 301–307 (2019).

27. Z. Li, J. D. Hirst, Chem. Sci., 8, 4318–4333 (2017).

28. A. J. Miles, R. W. Janes, B. A. Wallace, Chem. Soc. Rev. 50, 8400–8413 (2021).

29. R. Arunkumar, C. J. Drummond, T. L. Greaves, Front. Chem., 7, 74–79 (2019).

30. A. Sadat, I. J. Joye, Appl. Sci., 10, No. 17, 5918–5925 (2020).

31. Z. Limpouchová, K. Procházka, In: Fluorescence Studies of Polymer Containing Systems, Ed. K. Procházka, Springer International Publishing, Cham, Swizerland, 91–149 (2016).

32. B. R. Masters, Book Review: Molecular Fluorescence, Principles and Applications (2013).

33. O. A. Plotnikova, A. G. Mel’nikov, G. V. Mel’nikov, Opt. Spectrosc., 120, 65–69 (2016).

34. K. Gao, R. Oerlemans, M. R. Groves, Biophys. Rev., 12, No. 1, 85–104 (2020).

35. A. Papadopoulou, R. J. Green, R. A. Frazier, J. Agric. Food Chem., 53, 158–163 (2005).

36. L. Zhao, R. Liu, X. Zhao, Sci. Total Environ., 407, 5019–5023 (2009).

37. Y. Liu, M. Chen, L. Jiang, L. Song, Environ. Sci. Poll. Res. Int., 21, 6994–7005 (2014).


Review

For citations:


Shirazi N.H., Rajabi M.R. Spectroscopic Analysis of the Zinc Ion Interaction with Horseradish Peroxidase. Zhurnal Prikladnoii Spektroskopii. 2023;90(1):112. (In Russ.)

Views: 151


ISSN 0514-7506 (Print)