Identification of Quality Characteristics of Flue-Cured Tobacco Based on Raman Spectroscopy
Abstract
A rapid identification method for flue-cured tobacco quality was proposed based on Raman spectroscopy. Considering the critical quality factors of flue-cured tobacco-like oil content, softness, and glossiness, four statistical methods, random forest, K-nearest neighbor, logistic regression, and partial least squares, can effectively improve the accuracy of quality identification. We randomly collected 149 flue-cured tobacco samples from multiple producing areas in China. After Raman spectroscopy analysis, Savitzky–Golay convolution smoothing and multi-scatter correction were done. The functional groups were analyzed to select characteristic peaks as features for discriminant analysis. The results show that the Raman spectroscopic information can distinguish the quality of flue-cured tobacco with an accuracy greater than 95%, whereas the partial least-squares approach delivers an accuracy of 100%. We conclude that Raman spectroscopy can be considered a vital avenue for identifying the quality of flue-cured tobacco.
About the Authors
F.-F. LiuChina
Hubei Wuhan
Y.-L. Shen
China
Hubei Wuhan
S.-W. Zhan
China
Hubei Wuhan
Y. Wang
China
Hubei Xiangyang
Y. Mou
China
Hubei Wuhan
S.-L. Dong
China
Hubei Wuhan
J.-W. He
China
Hubei Wuhan
References
1. Y. Liu, J. Que, L. J. Yu, et al., Chin. Agric. Sci. Bull., 29, No. 22, 83–89 (2013).
2. Q. Bao, Y. Zhang, A. G. Wang, et al., Tobacco Sci. Technol., 48, No. 7, 14–19 (2015).
3. G. F. Li, Study on the Material Basis of Tobacco Oil, Zhengzhou University (2015).
4. H. L. Jiang, K. Peng, Y. Zhang, et al., Chin. Tobacco Sci., 40, No. 2, 80–86 (2019).
5. China Tobacco Production, Purchase and Marketing Corporation. Training Materials for Mational Standards of Flue-cured Tobacco Grading, Beijing, China Standards Press, 39–40 (2005).
6. W. T. Wang, H. Zhang, Y. Yuan, et al., AAPS Pharm. Sci. Tech., 19, No. 7, 2921–2928 (2018).
7. J. N. Chen, S. Ye, D. M. Dong, Laser J., 39, No. 9, 25–29 (2018).
8. B. Ranjan, Y. Saito, P. Verma, Appl. Phys. Express, 9, No. 3, 032401 (2016).
9. R. Galli, G. Pressse, C. Schnabel, et al., PloS One, 13, No. 2, 334 (2018).
10. Y. L. Jy, H. P. Jin, M. Hyoyoung, et al., Food Chem., 254, 109–114 (2018).
11. M. M. Hassan, M. Zareef, Y. Xu, et al., Food Chem., 344, 128652 (2020).
12. C. K. A. Nyamekye, J. M. Bobbitt, Q. Zhu, et al., Anal. Bioanal. Chem., 412, No. 24, 6009 (2020).
13. L. Zhang, Application of Raman Spectroscopy in Qualitative and Quantitative Analysis of Raw Materials and Products in Chemical Production, Shanghai: East China University of Science and Technology (2016).
14. R. E. Kast, S. C. Tucker, K. Killian, et al., Cancer Metastasis Rev., 33, No. 2–3, 673–693 (2014).
15. Q. Gao, Z. H. Zhang, F. Lu, Spectrosc. Spectr. Anal., 32, No. 12, 3258–3261 (2012).
16. Y. D. Wang, M. Q. Zhao, B. Fu, et al., Chin. Tobacco Sci., 36, No. 6, 88–93 (2015).
17. J. Bin, J. H. Zhou, W. Fan, et al., Acta Tabac. Sin., 23, No. 2, 60–68 (2017).
18. C. A. Marcelo, F. L. F. Soares, J. A. Ardila, C. Jailson et al., Anal. Methods, 11, No. 14, 1–10 (2019).
19. M. Y. Lu, K. Yang, P. F. Song, et al., Spectrosc. Spectr. Analysis, 38, No. 12, 3724–3728 (2018).
20. F. M. Tian, H. Y. Yu, F. Tan, et al., Oxidation Comm., 4, No. 2, 3273–3283 (2016).
21. Breiman Leo, Machine Learning, 45, 5–32 (2001).
22. L. Wang, M. Han, X. J. Li, et al., IEEE ACCESS, 9, 64606–64628 (2021).
23. H. W. Luo, X. B. Pan, Q. S. Wang, et al., IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), 916–917 (2019).
24. C. L. Lee, C. Y. Liong, et al., Analyst, 143, No. 15, 3526–3539 (2018).
Review
For citations:
Liu F., Shen Y., Zhan S., Wang Y., Mou Y., Dong S., He J. Identification of Quality Characteristics of Flue-Cured Tobacco Based on Raman Spectroscopy. Zhurnal Prikladnoii Spektroskopii. 2023;90(1):113. (In Russ.)