Determination of the Gold Alloys Composition by Laser-Induced Plasma Spectroscopy Using an Algorithm for Matching Experimental and Calculated Values of Electron Number Density
Abstract
Laser-induced breakdown spectroscopy (LIBS) was applied for qualitative and quantitative analysis of gold alloys. A frequency double-pulsed Nd:YAG laser was used to generate plasma on the surface of gold alloys. The plasma temperatures of gold and copper were calculated using Boltzmann plots whereas electron number densities were determined via Saha–Boltzmann equations. The effect of self-absorption in the laserinduced emission spectra was evaluated for correction in the intensity of spectral lines. By combining electron number density conservation approach (ENDC) with LIBS, an algorithm for gold alloys composition determination was derived by matching the theoretically derived ratios of the number densities and the experimentally obtained ratios of the number densities extracted from LIBS spectra. The results of ENDC-LIBS approach were compared with those estimated by a conventional calibration-free LIBS approach and other established analytical technique energy dispersive X-ray. The results clearly demonstrated that ENDC-LIBS methodology appeared to be very promising for analysis of LIBS spectra of gold alloys.
Keywords
About the Authors
Z. FarooqPakistan
Lahore
R. Ali
Pakistan
Islamabad
N. Ahmed
Pakistan
Muzaffarabad
M. Fahad
Pakistan
Islamabad;
Abbottabad
A. ul Ahmad
Pakistan
Faisalabad
M. Yaseen
Pakistan
Lahore
M. H. R. Mahmood
Pakistan
Lahore
S. Hussain
Pakistan
Lahore
I. Rehan
Pakistan
Peshawar
M. Z. Khan
Pakistan
Peshawar
T. Jan
Pakistan
Islamabad
M. A. Qayyum
Pakistan
Lahore
M. Afzal
Pakistan
Lahore
M. S. Mahr
Pakistan
Faisalabad
M. Shafique
Pakistan
Faisalabad
References
1. L. J. Radziemski, D. A. Cremers, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley & Sons, 1, 1–4 (2006).
2. M. Fahad, Z. Farooq, M. Abrar, Appl. Opt., 58, No. 13, 3501–3508 (2019).
3. C. Aragon, J. A. Aguilera, F. Penalba, Appl. Spectrosc., 53, No. 10, 1259–1267 (1999).
4. P. Fichet, D. Menut, R. Brennetot, E. Vors, A. Rivoallan, Appl. Opt., 42, No. 30, 6029–6035 (2003).
5. V. Burakov, S. Raikov, Spectrochim. Acta B: At. Spectrosc., 62, No. 3, 217–223 (2007).
6. E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Müller, U. Panne, I. Gornushkin, Spectrochim. Acta B: At. Spectrosc., 62, No. 12, 1287–1302 (2007).
7. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, E. Tognoni, Appl. Spectrosc., 53, No. 8, 960–964 (1999).
8. J. Yang, X. Li, J. Xu, X. Ma, Appl. Spectrosc., 72, No. 1, 129–140 (2018).
9. Z. Farooq, R. Ali, U. S. Qurashi, M. H. Mahmood, M. Yaseen, M. A. Qayyum, M. N. Hussain, S. M. Shah, T. Jan, Phys. Plasmas, 25, No. 9, 093106 (2018).
10. M. Fahad, Z. Farooq, M. Abrar, K. H. Shah, T. Iqbal, S. Saeed, Laser Phys., 28, No. 12, 125701 (2018).
11. J. Gomba, C. D'Angelo, D. Bertuccelli, G. Bertuccelli, Spectrochim. Acta B: At. Spectrosc., 56, No. 6, 695–705 (2001).
12. V. V. Kogan,M.W. Hinds, G. I. Ramendik, Spectrochim. Acta B: At. Spectrosc., 49, No. 4, 333–343 (1994).
13. S. H. Langer, A. Saud, G. McDonald, J. A. Koutsky, Google Patents (1987).
14. M. Heurtebise, F. Montoloy, J. Lubkowitz, Anal. Chem., 45, No. 1, 47–52 (1973).
15. W. Stankiewicz, B. Bolibrzuch, M. Marczak, Gold Bull., 31, No. 4, 119–125 (1998).
16. L. Sun, H. Yu, Talanta, 79, No. 2, 388–395 (2009).
17. A. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, E. Tognoni, Spectrochim. Acta B: At. Spectrosc., 60, No. 12, 1573–1579 (2005).
18. Z. Farooq, R. Ali, A. Ali, T. Mubeen, T. Jan, H. Anwar, Appl. Spectrosc., 73, No. 1, 30–39 (2019).
19. H. Griem, Monographs on Plasma Physics, Cambridge, Cambridge University Press, 55, 59–61 (1997).
20. Q. Abbass, N. Ahmed, R. Ahmed, M. A. Baig, Plasma Chem. and Plasma Proc., 36, No. 5, 1287–1299 (2016).
21. V. Unnikrishnan, K. Mridul, R. Nayak, K. Alti, V. Kartha, C. Santhosh, G. Gupta, B. Suri, Pramana, 79, No. 2, 299–310 (2012).
22. V. Unnikrishnan, K. Alti, V. Kartha, C. Santhosh, G. Gupta, B. Suri, Pramana, 74, No. 6, 983–993 (2010).
23. Z. Farooq, R. Ali, A. ul Ahmad, M. Yaseen, M. H. Mahmood, M. Fahad, M. N. Hussain, I. Rehan, M. Z. Khan, M. U. Farooq, Appl. Opt., 59, No. 8, 2559–2568 (2020).
24. R. McWhirter, presented at the Plasma diagnostic techniques, 1965 (unpublished).
25. G. Cristoforetti, A. De Giacomo, M. Dell'Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, N. Omenetto, Spectrochim. Acta B: At. Spectrosc., 65, No. 1, 86–95 (2010).
26. G. Cristoforetti, E. Tognoni, L. A. Gizzi, Spectrochim. Acta B: At. Spectrosc., 90, 1–22 (2013).
Review
For citations:
Farooq Z., Ali R., Ahmed N., Fahad M., ul Ahmad A., Yaseen M., Mahmood M.H., Hussain S., Rehan I., Khan M.Z., Jan T., Qayyum M.A., Afzal M., Mahr M.S., Shafique M. Determination of the Gold Alloys Composition by Laser-Induced Plasma Spectroscopy Using an Algorithm for Matching Experimental and Calculated Values of Electron Number Density. Zhurnal Prikladnoii Spektroskopii. 2023;90(1):115. (In Russ.)