Experimental and Comparative Study of Optical Properties of Different Phantoms by the Kubelka–Munk Function Approach
Abstract
We optically characterized agar, muscle, and Zerdine phantoms mimicking human tissues. To the best of our knowledge, optical parameters for agar, muscle, and Zerdine phantoms have not been optimally determined in the literature. For this reason, this novel study makes significant contributions to the literature and there is an important innovation and originality in the optical characterization of these materials. With this research based on the phantoms, in this article we make important contributions to possible future studies, including optical device design and imaging technique development, system validation studies, etc. In other words, characterization studies on materials that imitate tissue in light-tissue interactions can provide important information to researchers and practitioners. In optical characterization, basic parameters such as the absorption coefficient, reduced scattering coefficient, and anisotropy factor, are evaluated as distinguishing characteristics, and these are referred to as microscopic optical properties in the literature. In this study, the optical properties of the aforementioned three different phantoms were experimentally investigated and compared with each other’s. First, the macroscopic optical properties of the phantoms, including the absorbance, transmittance, reflectance, refractive index, and attenuation coefficient, were measured using a single integrated sphere and a spectrometer equipped with a broadband white light source within the wavelength range 200 to 1000 nm. Then, using the Kubelka–Munk function method, microscopic optical properties, which are the absorption coefficient, scattering coefficient, and reduced scattering coefficient, were determined based on the data of these macroscopic properties.
About the Authors
H. O. DurmuşTurkey
Kocaeli
B. Karaböce
Turkey
Kocaeli
M. Y. Seyidov
Turkey
Kocaeli
References
1. A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. V. Tuchin, J. Biomed. Opt., 23, No. 9, 091416 (2018).
2. S. H. Yun, S. J. Kwok, Nat. Biomed. Eng., 1, No. 1, 1–16 (2017).
3. https://link.springer.com/chapter/10.1007/978-3-319-31903-2_13
4. S. L. Jacques, Phys. Med. Biol., 58, No. 11, R37 (2013).
5. V. K. Nagarajan, V. R. Gogineni, S. B. White, B. Yu, Int. J. Hyperthermia, 35, No. 1, 176–182 (2018).
6. W. F. Cheong, S. A. Prahl, A. J. Welch, IEEE J. Quantum Electron., 26, No. 12, 2166–2185 (1990).
7. A. N. Bashkatov, E. A. Genina, V. V. Tuchin, J. Innovative Opt. Health Sci., 4, No. 1, 9–38 (2011).
8. M. J. van Gemert, R. Verdaasdonk, E. G. Stassen, G. A. Schets, G. H. Gijsbers, J. J. Bonnier, Lasers Surg. and Med., 5, No. 3, 235–237 (1985).
9. F. Fanjul-Vélez, J. L. Arce-Diego, Proc. 21st Int. Conf. Radioelektronika 2011, 1–4 (2011).
10. M. R. Shenoy, B. P. Pal, Appl. Opt., 47, No. 17, 3216–3220 (2008).
11. X. Liu, Y. Wu, Solar Energy Mater. Solar Cells, 223, 110972 (2021).
12. D. Sardar, L. Levy, Laser. Med. Sci., 13, 106–111 (1998).
13. D. K. Sardar, B. G. Yust, F. J. Barrera, L. C. Mimun, A. T. Tsin, Laser. Med. Sci., 24, No. 6, 839–847 (2009).
14. A. Shahin, W. Bachir, M. S. El-Daher, Polish J. Med. Phys. Eng., 27, No. 1, 99–107 (2021).
15. María M. Pérez, Ana Ionescu, Ana Yebra, Juan C. Cardona, Luis J. Herrera, María José Rivas, Óscar E. Pecho, Razvan Ghinea, Proc. SPIE, 10453 (2017), https://doi.org/10.1117/12.2276308.
16. E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, W. Saeys, D. Pérez-Marín, J. E. Guerrero-Ginel, Innovative Food Sci. Emerging Technol., 20, 343–349 (2013).
17. C. K. McGarry, L. J. Grattan, A. M. Ivory, F. Leek, G. P. Liney, Y. Liu, C. H. Clark, Phys. Med. Biol. (2020).
18. G. Rajeshkumar, R. Vishnupriyan, S. Selvadeepak, Tissue Mimicking Material an Idealized Tissue Model for Clinical Applications: A Review Materials Today: Proceedings, 22, 2696–2703 (2020), https://doi.org/10.1016/j.matpr.2020.03.4.
19. V. Cheruparambath, S. Sampath, L. N. Deshikar, H. M. Ismail, K. Bhuvana, Indian J. Critic. Care Med., 16, No. 3, 163 (2012).
20. M. O. Culjat, D. Goldenberg, P. Tewari, R. S. Singh, Ultrasound Med. Biol., 36, No. 6, 861–873 (2010).
21. K. Wang, C. C. Ho, C. Zhang, B. Wang, Engineering, 3, No. 5, 653–662 (2017).
22. O. Sieryi, A. Popov, V. Kalchenko, A. Bykov, I. Meglinski, Proc. SPIE, 11363 (2020), https://doi.org/10.1117/12.2560174.
23. S. Khan, S. Hollenbach, S. Goswami, F. Feng, S. A. McAleavey, IEEE Int. Ultrasonics Symposium (IUS), 1–3 (2020); doi: 10.1109/IUS54386.2022.9958924.
24. J. R. Cook, R. R. Bouchard, S. Y. Emelianov, Biomed. Opt. Express, 2, No. 11, 3193–3206 (2011).
25. R. Srinivasan, D. Kumar, M. Singh, Trends Biomater. Artif. Organs, 15, No. 2, 42–47 (2002).
26. C. Kim, A. Garcia-Uribe, S. R. Kothapalli, L. V. Wang, Proc. SPIE, 6870 (2008), https://doi.org/10.1117/12.766773.
27. A. Bitarafan-Rajabi, H. Hasanzadeh, M. Jahangiri, Z. Hoseinpour, H. Nazemi, A. Baghian, H. Moladoust, Arch. Cardiovascular Imaging, 2, No. 2 (2014).
28. B. W. Pogue, M. S. Patterson, J. Biomed. Opt., 11, No. 4, 041102 (2006).
29. H. O. Durmus, F. Sametoglu, B. Karaboce, M. Y. Seyidov, “Investigation of Macroscopic and Microscopic Optical Properties of Agar-Based IEC Phantom”, Middle East International Conference on Contemporary Scientific Studies-V, Ankara, 27–28/03/2021 (2021).
30. H. O. Durmus, E. Ari, B. Karaboce, M. Yu, Results Optics, 5, 100142 (2021).
31. A. I. Chen, M. L. Balter, M. I. Chen, D. Gross, S. K. Alam, T. J. Maguire, M. L. Yarmush, Med. Phys., 43, No. 6, 3117–3131 (2016).
32. P. Lai, X. Xu, L. V. Wang, J. Biomed. Opt., 19, No. 3, 035002 (2014).
33. E. Dong, Z. Zhao, M. Wang, Y. Xie, S. Li, P. Shao, R. X. Xu, J. Biomed. Opt., 20, No. 12, 121311 (2015).
34. McGraw-Hill Dictionary of Scientific & Technical Terms, 6th ed., McGraw-Hill Companies, Inc. (2003).
35. L. Yang, B. Kruse, JOSA, 21, No. 10, 1933–1941 (2004).
36. W. E. Vargas, G. A. Niklasson, Appl. Opt., 36, No. 22, 5580–5586 (1997).
37. A. B. Murphy, J. Phys. D: Appl. Phys., 39, No. 16, 3571 (2006).
38. T. Lindbergh, M. Larsson, I. Fredriksson, T. Strömberg, Proc. SPIE, 6435, 64350I (2007); https://doi.org/10.1117/12.698903.
39. C. J. Hourdakis, A. Perris, Phys. Med. Biol., 40, No. 3, 351 (1995).
40. E. Çetin, H. O. Durmuş, B. Karaböce, N. Kavaklı, IEEE Int. Symposium Medical Measurements and Applications (MeMeA), 1–5 (2019), doi: 10.1109/MeMeA.2019.8802203.
41. M. B. Zerhouni, M. Rachedine, In: Ultrasonic Calibration Material and Method, Ed. Google Patents (1993).
42. M. I. Gutierrez, S. A. Lopez-Haro, A. Vera, L. Leija, BioMed Res. Int. (2016).
43. M. Y. Nadeem, W. Ahmed, Turkish J. Phys., 24, No. 5, 651–659 (2000).
44. D. T. Harvey, Analytical Chemistry for Technicians, 3rd ed., John Kenkel (2003).
45. S. Chang, A. K. Bowden, J. Biomed. Opt., 24, No. 9, 090901 (2019).
46. J. O. S. E. Torrent, V. Barrón, Mineral. Methods, 5, 367–385 (2008).
47. B. C. Wilson, In: Optical-Thermal Response of Laser-Irradiated Tissue, Springer, Boston, MA, 233–303 (1995).
48. E. J. Jeong, H. W. Song, Y. J. Lee, S. J. Park, M. J. Yim, S. S. Lee, B. K. Kim, BioChip J., 11, No. 1, 67–75 (2017).
49. L. Ntombela, B. Adeleye, N. Chetty, Heliyon, 6, No. 3, e03602 (2020).
50. P. Sun, Y. Wang, Opt. Laser Tech., 42, No. 1, 1–7 (2010).
51. H. O. Durmuş et al., IEEE Int. Symposium on Medical Measurements and Applications (MeMeA) (2020), doi: 10.1109/MeMeA49120.2020.9137206.
Review
For citations:
Durmuş H.O., Karaböce B., Seyidov M.Y. Experimental and Comparative Study of Optical Properties of Different Phantoms by the Kubelka–Munk Function Approach. Zhurnal Prikladnoii Spektroskopii. 2023;90(1):124. (In Russ.)