Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Photoexcitation Energy Deactivation in the Solution of the 10-Phenyl-5,15-Di-(4,6-Dichloropyrimidinyl)-Corrole at 77 K

Abstract

Spectral-luminescent characteristics of the solution of 10-phenyl-5,15-di-(4,6-dichloropyrimidinyl)-corrole at 77 K have been studied. It has been found that in the lowest T1 triplet state of the long-wavelength T1-tautomer, the effective NH-tautomerization occurs, resulting in the phosphorescence being emitted from the short-wavelength T2-tautomer only. It has been found that at 77 K the acid-base equilibrium shifted and a certain fraction of the molecules has been deprotonated. The fluorescence and phosphorescence spectra of the deprotonated form have been identified, and it has been found that the energy gap for the deprotonated form DE(S1 - Т1) = 5570 cm-1 is as large as that one for the free bases. The molecular conformation of NH-tautomers for the series of corroles with different peripheral substitution architecture has been optimized by the density functional theory method, their electronic absorption spectra and the energy gap DE(S1-T1) have been calculated. It has been established that an increase in the energy gap DE(S1-T1) is due to the increase in the energy mismatch DE(LUMO-LUMO+1), and the observed trend is common for all the types of studied molecular systems: both NH-tautomers of the free base and the deprotonated form. It has been proposed that such a trend is the inherent property of the contracted corrole macrocycle, which has an excess of electron density compared to the porphine.

About the Authors

V. N. Knyukshto
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Minsk



L. L. Gladkov
Belarusian State Academy of Communications
Belarus

Minsk



W. Maes
Institute for Materials Research (IMO-IMOMEC), Hasselt University
Belgium

Diepenbeek



M. M. Kruk
Belarusian State Technological University
Belarus

Minsk



References

1. Yu. B. Ivanova, V. A. Savva, N. Zh. Mamardashvili, A. S. Starukhin, T. H. Ngo, W. Dehaen, W. Maes, M. M. Kruk. J. Phys. Chem. A, 116 (2012) 10683—10694

2. M. M. Kruk, T. H. Ngo, P. Verstappen, A. S. Starukhin, J. Hofkens, W. Dehaen, W. Maes. J. Phys. Chem. A, 116 (2012) 10695—10703

3. Y. H. Ajeeb, T. B. Karlovich, L. L. Gladkov, W. Maes, M. M. Kruk. J. Appl. Spectr., 86 (2019) 389—395

4. Y. H. Ajeeb, D. V. Klenitsky, I. V. Vershilovskaya, D. V. Petrova, A. S. Semeikin, W. Maes, L. L. Gladkov, M. M. Kruk. J. Appl. Spectr., 87 (2020) 421—427

5. D. V. Klenitsky, L. L. Gladkov, I. V. Vershilovskaya, D. V. Petrova, A. S. Semeikin, W. Maes, M. M. Kruk. J. Appl. Spectr., 88 (2022) 1111—1118

6. L. L. Gladkov, D. V. Klenitsky, I. V. Vershilovskaya, W. Maes, M. M. Kruk. J. Appl. Spectr., 89 (2022) 426—432

7. M. M. Kruk. J. Appl. Spectr., 89 (2022) 624—630

8. V. N. Knyukshto, H. T. Ngo, W. Dehaen, W. Maes, M. M. Kruk. RCS Adv., 6 (2016) 43911—43915

9. T. H. Ngo, F. Puntoniero, F. Nastasi, K. Robeyns, L. Van Meervelt, S. Campagna, W. Dehaen, W. Maes. Chem. Eur. J., 16 (2010) 5691—5701

10. V. N. Knyukshto, K. N. Solovyov, G. D. Egorova. Biospectrosc., 4 (1998) 121—133

11. Е. И. Сагун, Э. И Зенькевич, В. Н. Кнюкшто, А. Ю. Панарин, А. С. Семейкин, Т. В. Любимова. Опт. и спектр., 113 (2012) 1—14

12. J. Capar, J. Conradie, C. Beavers, A. Ghosh. J. Phys. Chem. A, 119 (2015) 3452—3457

13. E. I. Zen'kevich, E. I. Sagun, V. N. Knyukshto, A. M. Shul'ga, A. F. Mironov, O. A. Efremova, R. Bonnett, M. Kaddem. J. Appl. Spectr., 63 (1996) 502—513

14. D. N. Laikov. Chem. Phys. Lett., 281 (1997) 151—156

15. D. N. Laikov, Yu. A. Ustynyuk. Russ. Chem. Bull., 54 (2005) 820—826

16. M.O. Senge, S.A. MacGowan, J. O'Brien. Chem. Comm (Camb.), 51 (2015) 17031—17063

17. A. Eschenmoser. Ann. N.Y. Acad. Sci., 471 (1986) 108—118

18. M. M. Kruk, T. H. Ngo, V. A. Savva, A. S. Starukhin, W. Dehaen, W. Maes. J. Phys. Chem. A, 116 (2012) 10704—10711

19. Y. H. Ajeeb, A. A. Minchenya, P. G. Klimovich, W. Maes, M. M. Kruk. J. Appl. Spectr., 86 (2019) 788—794

20. K. Tsukahara, M. Tsunumori, Y. Yamamoto. Inorg. Chim. Acta, 118 (1986) L21—L22

21. Y. Mori, M. Sasaki, C. Daian, Y. Sachiko, M. Koko. Bull. Chem. Soc. Jpn., 65 (1992) 3358—3361

22. M. M. Kruk, D. V. Klenitsky, W. Maes. Macroheterocycles, 12 (2019) 58—67

23. К. Н. Соловьев, Е. А. Борисевич. Успехи физ. наук, 175 (2005) 247—270

24. J. A. Shelnutt, X.-Z. Song, J.-G. Ma, S.-L. Jia, W. Jentzen, C. J. Medforth. Chem. Soc. Rev., 27 (1998) 31—41

25. B. Roder, M. Buchner, I. Ruckmann, M. O. Senge. Photochem. Photobiol. Sci., 9 (2010) 1152—1158

26. C. J. Ziegler, J. R. Sabin, G. Richard Geier III, V. N. Nemykin. Chem. Comm., 48 (2012) 4743—4745

27. W. J. D. Beenken, M. Presselt, T. H. Ngo, W. Dehaen, W. Maes, M. M. Kruk. J. Phys. Chem. A, 118 (2014) 862—871


Review

For citations:


Knyukshto V.N., Gladkov L.L., Maes W., Kruk M.M. Photoexcitation Energy Deactivation in the Solution of the 10-Phenyl-5,15-Di-(4,6-Dichloropyrimidinyl)-Corrole at 77 K. Zhurnal Prikladnoii Spektroskopii. 2023;90(3):385-393. (In Russ.)

Views: 102


ISSN 0514-7506 (Print)