

Spectral, Optical, and Birefringence Studies of ZnO Dispersed Schiff Based Liquid Crystals Compounds for Display Device Application
Abstract
Nowadays zinc nanoparticles (NPs) have attracted many applications in display technology. Due to the dispersion of nanoparticles in liquid crystals (LCs), the display properties are enhanced. The present work focuses on the significant changes in the properties of LC displays with the dispersion of ZnO NPs. Schiffbased LC compounds like p-n-decyloxybenzaldehyde and corresponding p-n-alkoxyanilines (10O.Om, with m = 3, 6) are prepared with the dispersion of ZnO NPs (1 wt%). The tools used to characterize the nanoparticles in LCs are X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and modified spectrometer. With XRD studies, the size of ZnO NPs is determined. By using SEM and EDS, the homogeneous dispersion and elemental analysis is estimated. With the data of POM, the textural analysis is examined. With DSC, the phase transition temperature of different phases is noted. With the modified spectrometer, the values of refractive indices and birefringence are determined. Furthermore, with these values, the molecular orientational order parameter S is measured by the Kuczynski and Haller Extrapolation methods. It is observed that the birefringence and order parameter values are decreased with the dispersion of 1 wt% ZnO NPs in Schiff based LC compounds.
About the Authors
P. JayapradaIndia
Department of Physics,
Vijayawada
R.K.N.R. Manepalli
India
Department of Physics,
Vishakhapatnam
B.T.P. Madhav
India
LCRC-R&D, Department of ECE,
Guntur
P. Pardhasaradhi
India
LCRC-R&D, Department of ECE,
Guntur
M. C. Rao
India
Department of Physics,
Vijayawada
References
1. H. K. Bisoyi, S. Kumar, Chem. Soc. Rev., 40, 306–319 (2011).
2. G. W. Gray, In: Handbook of Liquid Crystals, Eds. D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, V. Vill, Vol. 1, Wiley-VCH, Weinheim, 1–16 (1998).
3. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, C. S. Hsu, J. Appl. Phys., 43, 7634–7638 (2004).
4. S. T. Wu, Q. T. Zhang, S. Marder, Jpn. J. Appl. Phys., 37, L1254–L1256 (1998).
5. S. K. Prasad, M. V. Kumar, C. V. Yelamaggad, Carbon, 59, 512–517 (2013).
6. J. Branch, R. Thompson, J. W. Taylor, L. Salamanca-Riba, L. J. Martínez-Miranda, J. Appl. Phys., 115, 164313 (2014).
7. L. Marino, S. Marino, D. Wang, E. Bruno, N. Scaramuzza, Soft Matter, 10, 3842–3849 (2014).
8. A. Chandran, J. Prakash, K. K. Naik, A. K. Srivastava, R. Dąbrowski, M. Czerwiński, A. J. Biradar, J. Mater. Chem., C2, 1844–1853 (2014).
9. P. Goel, M. Arora, A.M. Biradar, J. Appl. Phys., 115, 124905 (2014).
10. L. Wang, W. L. He, X. Xiao, M. Wang, P. Y. Yang, Z. J. Zhou, H. Yang, H. F. Yu, Y. F. Lu, Mater. Chem., 22, 19629–19633(2012).
11. X. W. Zhang, D. Luo, Y. Li, M. Zhao, B. Han, M. T. Zhao, H. T. Dai, Liq. Cryst., 42, 1257–1263 (2015).
12. U. Manzoor, M. Islam, L. Tabassam, S. U. Rahman, Phys. E, 41, 1669–1672 (2015).
13. J. C. Nie, J. Y. Yang, Y. Piao, H. Li, Y. Sun, Q. M. Xue, C. M. Xiong, R. F. Dou, Q. Y. Tu, Appl. Phys. Lett., 93, 173104 (2008).
14. A. V. Kabashin, A. Trudeau, W. Marine, Appl. Phys. Lett., 91, 201101 (2007).
15. S. D. Haranath, A. G. Sahai, B. K. Joshi Gupta, Nanotech., 20, 42570 (2009).
16. X. D. Li, T. P. Chen, P. Liu, Y. Liu, K. C. Leong, Opt. Express, 21, 14131–14138 (2013).
17. A. L. Schoenhalz, J. T. Arantes, A. Fazzio, G. M. Dalpian, J. Phys. Chem. C, 114, 18293–18297 (2010).
18. P. Khushboo Sharma, P. Malik, K. K. Raina, Liq. Cryst., 44, 1717–1726 (2017).
19. K. Pal, S. Thomas, M. L. N. M. Mohan, J. Nanosci. Nanotech., 17, 2401–2412 (2017).
20. W. Lee, C.-Y. Wang, Y.-C. Shih, Appl. Phys. Lett., 85, 513–515 (2004).
21. W. T. Chen, P. S. Chen, C. Y. Chao, Jpn. J. Appl. Phys., 48, 015006 (2009).
22. N. Kapernaum, F. Giesselmann, Phys. Rev. E, 78, 062701 (2008).
23. I. Haller, Prog. Solid State Chem., 10, 103–118 (1975).
24. H. J. Kim, Y. G. Kang, H. G. Park, K. M. Lee, H. Y. Jung, D. S. Seo, Liq. Cryst., 38, 871–875 (2011).
25. G. Pathaka, R. Katiyara, K. Agraharia, A. Srivastavaa, R. Dabrowskib, K. Garbatb, R. Manohara, OptoElectron. Rev., 26, 11–18 (2018).
26. H. Eskalen Özgan, O. Alver, S. Kerli, Acta Phys. Polonica A, 127, 756–760 (2015).
27. L. J. Martínez-Miranda, K. M. Traister, I. Meléndez- Rodríguez, Appl. Phys. Lett., 97, 223301 (2010).
28. P. V. Raja Shekar, D. Madhavi Latha, V. G. K. M. Pisipati, Opt. Mater., 64, 564–568 (2017).
29. S.-T. Wu, Phys. Rev. A, 33, No. 2, 1270–1274 (1986).
30. H. Mada, S. Kobayashi, Mol. Cryst. Liq. Cryst., 33, No. 1-2, 47–53 (1976).
31. J. Li, S.-T. Wu, J. Appl. Phys., 96, No. 1, 170–174 (2004).
32. L. M. Blinov, Electro-Optical and Magneto-Optical Properties of Liquid Crystals, Wiley, New York (1983). 33. S. T. Wu, J. Appl. Phys., 69, 2080–2087 (1991).
33. S. T. Wu, C. S. Wu, M. Warenghem, M. Ismaili, Opt. Eng., 32, 1775–1780 (1993).
34. E. M. Averyanov, J. Opt. Technol., 64, 417 (1997).
Review
For citations:
Jayaprada P., Manepalli R., Madhav B., Pardhasaradhi P., Rao M.C. Spectral, Optical, and Birefringence Studies of ZnO Dispersed Schiff Based Liquid Crystals Compounds for Display Device Application. Zhurnal Prikladnoii Spektroskopii. 2023;90(4):652.