Covalent Tryptophan-Nanodiamond Complex as an Effective Fluorescent Marker for the Detection of Halocarbons in Solutions
Abstract
The reaction of phototransformation of free tryptophan (Trp) and as part of a complex with nanodiamond particles (ND-Trp) in the presence of halocarbon (HC) – chloroform was studied by stationary spectroscopy. It was found that in the presence of chloroform, irradiation of solutions with UV radiation leads to an increase in the fluorescence intensity of the phototransformation products of tryptophan (FTT) – kynurenine and its derivatives. At the same time, a more significant increase in the intensity of integral fluorescence with a maximum of ~460 nm was observed in the ND-Trp system than in the system with free tryptophan. Optimal conditions for this reaction were studied. The applicability of the FTT reaction for the detection of widely used chlorine-containing hydrocarbons has been demonstrated: arochlor 1254 (USA standard) and prochlorase, which is part of the combined fungicide “Zamir”. A new photometric test system has been proposed for the detection of a high degree of sensitivity (up to 10–6–10–9 M) in the FTT reaction when irradiated with UV light.
About the Authors
V. A. LapinaBelarus
Minsk
T. A. Pavich
Belarus
Minsk
Ju. A. Kalvinkovskaya
Belarus
Minsk
References
1. М. И. Лунев. Рос. хим. журн., № 3 (2005) 64—70
2. А. Н. Панин. Рос. хим. журн., № 3 (2005) 71—82
3. H. H. Мельников, Г. М. Мельникова. Сорос. образ. журн., № 4 (1997) 33—37
4. P.-Y. Liu, M.-H. Zheng, X.-B. Xu. Chemosphere, 46 (2002) 1191—1193
5. H. A. Клюев. Диоксины и супертоксиканты XXI века, 3, Москва, Ин-т науч. и тех. Информации (2001) 64—70
6. http://caresd.net/site.html
7. https://silur.prom.ua/ua/p5215485-hloroform-pet.html
8. М. Lopez-Mesas. Analysis, 28 (2000) 159—162
9. A. L. Lohninger, M. Linhart, D. Landau. J. Anal. Chem., 133 (1989) 83—96
10. V. Andreu, Y. Pico. Trends Anal. Chem., 23 (2004) 772—789
11. T. Sun, J. Jia, D. Zhong, Y. Wang. Anal. Sci., 22 (2006) 293—298
12. A. B. Vega, A. G. Frenich, J. L. Martinez Vidal. Anal. Chim. Acta, 538 (2005) 117—127
13. W. A. Heidman. Chromatographia, 71 (1986) 363—372
14. EPA Method 1668. Chlorinated Biphenyls Congeners in Water, Soil, Sediment, and Tissue by HRGC/HRMS (1999) 100—133
15. M. M. Colum, Ch. S. Henry. Analyst, 131 (2006) 1091—1093
16. S. A. Eremin, D. S. Smith. Comb. Chem. High Throughput Screen., 6 (2006) 79—99
17. В. Н. Майстренко, Н. А. Клюев. Эколого-аналитический мониторинг стойких органических загрязнителей, Москва, БИНОМ, Лаборатория знаний (2004) 150—178
18. Ю. А. Золотов. Вестн. РАН, 67, № 6 (1997) 508—513
19. Ю. А. Золотов, В. М. Иванов, В. Г. Амелин. Химические тест-методы анализа, Москва, Едиториал УРСС (2006) 51—59
20. В. В. Зырянов, М. Д. Гольдфейн. Эколог. химия, № 11 (2002) 45—53
21. U. S. Rathore, S. R. Sharma, S. Mital. Water, Air, Soil Poll., 97 (1997) 431—441
22. J. R. Lakowicz. Principles of Fluorescence Spectroscopy, 3rd ed., Springer, Berlin-Heidelberg (2006) 63—94
23. A. V. Vorobey, Ye. A. Chernitskii, S. V. Konev. Biophysics, 371 (1992) 743—745
24. S. V. Pinchuk, A. V. Vorobey. J. Appl. Spectr., 70 (2003) 53—56]
25. J. C. Merlin, S. Turrell, J. P. Huvenne. Spectroscopy of Biological Molecules, Springer, Dordrecht (1995) 609—610
26. Norio Ogata. Biochemistry, 46 (2007) 4898—4911
27. С. L. Ladner, K. Tran, M. La. Photochem. Photobiol., 90 (2014) 1027—1033
28. V. A. Lapina, T. M. Gubarevich, G. S. Akhremkova, Yu. Schreiber. Russ. J. Phys. Chem. A, 84, N 2 (2010) 267—271
29. Ju. A. Kalvinkovskaya, T. A. Pavich, A. A. Ramanenka, S. B. Bushuk, A. N. Sobchuk, V. A. Lapina. Opt. and Spectrosc., 130, N 11 (2022) 1386—1391
30. Н. А. Клюев, Е. С. Бродский. Инф. вып. ВИНИТИ, Москва, № 5 (2007) 31—63
31. R. H. Boyle, J. H. Hignland. Environment, 21, N 5 (1979) 6—8
Review
For citations:
Lapina V.A., Pavich T.A., Kalvinkovskaya J.A. Covalent Tryptophan-Nanodiamond Complex as an Effective Fluorescent Marker for the Detection of Halocarbons in Solutions. Zhurnal Prikladnoii Spektroskopii. 2023;90(5):721-727. (In Russ.)