Machine Learning-Based Prediction of the Excitation Wavelength of Phosphors
Abstract
Current challenges in the field of luminescent materials are concerned with the designing efficient material to meet the rapidly rising demands of industry. Luminescent material excitation and emission are highly complex phenomena driven by the combination of atomic-level properties such as valence electron, interatomic radius, ionic radius, etc., and physical properties such as crystal structure, symmetry etc. The current research paper focuses on the development of a machine-learning algorithm based on simple luminescent materials to predict the excitation to the closest possible accuracy using easily accessible key attributes by the CatBoost regressor, multiple linear regression (MLR), and an artificial neural network (ANN) approach. These selected features likely correlate with the excitation of the material. In comparison, the ANN and MLR algorithms have higher mean absolute error values in both the training and test datasets. The CatBoost algorithm outperforms the other algorithms in terms of mean of the absolute percentage difference, achieving a value of 0.302136% in the training dataset. The CatBoost algorithm exhibits the lowest root mean squared error value of 1.680768 nm in the training dataset, indicating that its predictions have a smaller average deviation from the actual values. The style for studying the material property has the potential to reduce the cost and time involved in an Edisonian approach to the lengthy laboratory experiment to identify excitation.
About the Authors
S. K. SahuIndia
Material Science Research Lab.,
Nawapara (Kosmi), Gariyaband, Chhattisgarh
A. Shrivastav
India
Material Science Research Lab.,
Nawapara (Kosmi), Gariyaband, Chhattisgarh
N. K. Swamy
India
Material Science Research Lab.,
Nawapara (Kosmi), Gariyaband, Chhattisgarh
V. Dubey
India
Department of Physics,
Shillong, Meghalaya
D. K. Halwar
India
Department of Physics,
Malegaon Camp
M. T. Kumar
India
Department of CSE,
Vijayawada
M. C. Rao
India
Department of Physics,
Vijayawada
References
1. G. Blasse, A. Grabmaier, Luminescence Materials, Springer Verlag, Berlin Heidelberg (1994).
2. K. N. Shinde, S. J. Dhoble, Crit. Rev. Solid State Mater. Sci., 39, No. 6, 459–479 (2014).
3. H. Terraschke, C. Wickleder, Chem. Rev., 115, 11352–11378 (2015).
4. Y. Zhang, W. Xu, G. Liu, Z. Zhang, J. Zhu, M. Li, PLoS One, 16, No. 8, e0255637 (2021).
5. Pamir, N. Javaid, M. Akbar, A. Aldegheishem, N. Alrajeh, E. A. Mohammed, IEEE Access, 10, 121886–121899 (2022).
6. Y. Zhang, Z. Zhao, J. Zheng, J. Hydrology, 588, 125087 (2020).
7. Z. Jiang, J. Hu, B. L. Marrone, G. Pilania, X. Yu, Materials, 13, No. 24, 5701 (2020).
8. H. Tang, Z. Cao, J. Comput. Inf. Syst., 5, 1825–1831 (2009).
9. Z. Deng, Z. X. Qiu, M. M. Zhang, W. L. Zhou, J. L. Zhang, C. Z. Li, C. Y. Rong, L. P. Yu, S. X. Lian, J. Rare Earths, 33, No. 5, 463–468 (2015).
10. G. Li, M. Li, L. Li, H. Yu, H. Zou, L. Zou, S. Gan, X. Xu, Mater. Lett., 65, No. 23-24, 3418–3420 (2011).
11. C. Guo, L. Luan, X. Ding, F. Zhang, F. G. Shi, F. Gao, L. Liang, Appl. Phys. B: Lasers Opt., 95, No. 4, 779–785 (2009).
12. Y. Kang, L. Li, B. Li, J. Energy Chem., 54, 72–88 (2021).
13. I. M. Nagpure, K. N. Shinde, S. J. Dhoble, A. Kumar, J. Alloys Compd., 481, No. 1-2, 632–638 (2009).
14. M. Xie, H. Wei, W. Wu, Inorg. Chem., 58, No. 3, 1877–1885 (2019).
15. S. Zhang, Y. Huang, Y. Nakai, T. Tsuboi, H. J. Seo, J. Am. Ceram. Soc., 94, No. 9, 2987–2992 (2011).
16. Y. K. Su, Y. M. Peng, R. Y. Yang, J. L. Chen, Opt. Mater. (Amst.), 34, No. 9, 1598–1602 (2012).
17. S. S. Yao, L. H. Xue, Y. W. Yan, Phys. B: Cond. Mater., 406, No. 2, 250–253 (2011).
18. H. Ji, Z. Huang, Z. Xia, M. S. Molokeev, V. V. Atuchin, M. Fang, Y. Liu, J. Phys. Chem. C, 119, No. 4, 2038–2045 (2015).
19. C. H. Huang, T. M. Chen, Opt. Express, 18, No. 5, 5089–5099 (2010).
20. J. Wang, Z. Zhang, M. Zhang, Q. Zhang, Q. Su, J. Tang, J. Alloys Compd., 488, No. 2, 582–585 (2009).
21. X. Dong, J. Zhang, L. Zhang, X. Zhang, Z. Hao, Y. Luo, Eur. J. Inorg. Chem., 5, 870–874 (2014).
22. Y. Fang, Y. Huang, Y. Cao, G. Zhao, Y. Liu, F. Huang, H. T. Sun, H. Ou, J. Hou, Opt. Mater. Express, 10, No. 5, 1306–1322 (2020).
23. T. T. H. Tam, N. V. Du, N. D. T. Kien, C. X. Thang, N. D. Cuong, N. D. Chien, D. H. Nguyen, P. T. Huy, J. Lumin., 147, No. 3, 358–362 (2014).
24. J. S. Kim, P. E. Jeonny, J. C. Choi, H. L. Park, S. I. Mho, G. C. Kim, Appl. Phys. Lett., 84, No. 15, 2931–2933 (2004).
25. C. H. Huang, T. W. Kuo, T. M. Chen, ACS Appl. Mater. Interf., 2, No. 5, 1395–1399 (2010).
26. S. H. Park, K. H. Lee, S. Unithrattil, H. S. Yoon, H. G. Jang, W. Bin Im, J. Phys. Chem. C, 116, No. 51, 26850–26856 (2012).
27. X. Zhang, F. Moa, L. Zhou, M. Gong, J. Alloys Compd., 575, 314–318 (2013).
28. C. Qin, Y. Huang, L. Shi, G. Chen, X. Qiao, H. J. Seo, J. Phys. D: Appl. Phys., 42, No. 18 (2009).
29. Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, Q. Su, J. Solid State Chem., 179, No. 8, 2356–2360 (2006).
30. M. Zhang, J. Wang, W. Ding, Q. Zhang, Q. Su, Opt. Mater. (Amst)., 30, No. 4, 571–578 (2007).
31. S. Zhang, Y. Nakai, T. Tsuboi, Y. Huang, H. J. Seo, Chem. Mater., 23, No. 5, 1216–1224 (2011).
32. N. Hirosaki, T. Takeda, S. Funahashi, R. J. Xie, Chem. Mater., 26, No. 14, 4280–4288 (2014).
33. P. Pust, V. Weiler, C. Hecht, Nat. Mater., 13, No. 9, 891–896 (2014).
34. S. Yao, D. Chen, Cent. Eur. J. Phys., 5, 558–569 (2007).
35. S. Dubey, P. Deshmukh, S. Satapathy, M. K. Singh, P. K. Gupta, Lumin., 32, No. 5, 839–844 (2017).
36. T. M. Tolhurst, T. D. Boyko, P. Pust, N. W. Johnson, W. Schnick, A. Moewes, Adv. Opt. Mater., 3, No. 4, 546–550 (2015).
37. I. M. Nagpure, K. N. Shinde, V. Kumar, O. M. Ntwaeaborwa, S. J. Dhoble, H. C. Swart, J. Alloys Compd., 492, No. 1-2, 384–388 (2010).
38. K. N. Shinde, S. J. Dhoble, A. Kumar, J. Rare Earths, 29, No. 6, 527–535 (2011).
39. A. N. Yerpude, S. J. Dhoble, Adv. Mater. Lett., 4, No. 10, 792–796 (2013).
40. W. Pratama, J. Telemat., 7, No. 2, 13–31 (2016).
41. S. J. Dhoble, S. V. Moharil, T. K. Gundu Rao, J. Lumin., 126, No. 2, 383–386 (2007).
42. C. Zhao, X. Yin, Y. Wang, F. Huang, Y. Hang, J. Lumin., 132, No. 3, 617–621 (2012).
43. J. Sun, Y. Sun, H. Du, J. Phys. Chem. Solids, 74, No. 7, 1007–1011 (2013).
44. Y. Zhang, D. Geng, M. Shang, Y. Wu, X. Li, H. Lian, Z. Cheng, J. Lin, Eur. J. Inorg. Chem., 7, No. 25, 4389–4397 (2013).
45. Y. Tian, Y. Wei, Y. Zhao, Z. Quan, G. Li, J. Lin, J. Mater. Chem. C, 4, No. 6, 1281–1294 (2016).
46. G. Feng, W. Jiang, Y. Chen, R. Zeng, Mater. Lett., 65, No. 1, 110–112 (2011).
47. V. B. Pawade, S. J. Dhoble, Opt. Commun., 284, No. 18, 4185–4189 (2011).
48. P. J. Yadav, C. P. Joshi, S. V. Moharil, J. Lumin., 136, 1–4 (2013).
49. Y. Shimomura, T. Honma, M. Shigeiwa, T. Akai, K. Okamoto, N. Kijima, J. Electrochem. Soc., 154, No. 1, J35–J38 (2007).
50. Z. Jiang, Y. Wang, L. Wang, J. Electrochem. Soc., 157, No. 5, J155–J158 (2010).
51. D. Shukla, K. B. Ghormare, S. J. Dhoble, Adv. Mater. Lett., 5, No. 7, 406–408 (2014).
52. K. N. Shinde, S. J. Dhoble, A. Kumar, J. Lumin., 131, No. 5, 931–937 (2011).
53. Y. Chen, X. Cheng, M. Liu, Z. Qi, C. Shi, J. Lumin., 129, No. 5, 531–535 (2009).
54. A. N. Yerpude, S. J. Dhoble, J. Lumin., 132, No. 11, 2975–2978 (2012).
55. B. R. Verma, R. N. Baghel, D. P. Bisen, S. Ghosh, V. Jena, Int. J. Appl. Eng. Res., 14, No. 9, 2162–2166 (2019).
56. S. N. Ogugua, S. K. K. Shaat, H. C. Swart, O. M. Ntwaeaborwa, J. Lumin., 179, 154–164 (2016).
57. X. Zhang, Z. Zhang, H. J. Seo, J. Alloys Compd., 509, No. 14, 4875–4877 (2011).
58. Y. Shi, G. Zhu, M. Mikami, Y. Shimomura, Y. Wang, Mater. Res. Bull., 48, No. 1, 114–117 (2013).
59. C. C. Lin, Y. S. Tang, S. F. Hu, R. S. Liu, J. Lumin., 129, No. 12, 1682–1684 (2009).
60. J. Yu, C. Guo, Z. Ren, J. Bai, Opt. Laser Technol., 43, No. 4, 762–766 (2011).
61. Y. K. Xu, S. Adachi, J. Appl. Phys., 105, No. 1, 013525 (2009).
62. M. Liu, C. Huang, L. Wang, Y. Zhang, X. Luo, Water, 12, No. 11, 3085 (2020).
Review
For citations:
Sahu S.K., Shrivastav A., Swamy N.K., Dubey V., Halwar D.K., Kumar M.T., Rao M.C. Machine Learning-Based Prediction of the Excitation Wavelength of Phosphors. Zhurnal Prikladnoii Spektroskopii. 2024;91(3):466.