A New Type of Composite Catalyst α-nBACoPc/SnO2 Synergistic Photo-Catalytic Degradation of Dyes
Abstract
The α-nBACoPc/SnO2 composites were prepared using the in situ synthesis method and characterized by Fourier transform infrared (FT-IR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and confirmed by the loading of amino cobalt phthalocyanine on SnO2. Conduct photocatalytic degradation experiments used rhodamine B as a simulated pollutant. The composite exhibited a photo-catalytic degradation rate of 83.3%, which was higher than that of α-nBACoPc and SnO2 alone. The Co-O bond in the composite material enhances the transfer of electrons from phthalocyanine to the SnO2 conduction band, improving light utilization and strengthening the synergistic impact of cobalt phthalocyanine and SnO2. Furthermore, the composites demonstrated good stability and recyclability.
About the Authors
Y. YinКитай
Yanbing Yin
Qiqihar, Heilongjiang
B. Jiang
Китай
Bei Jiang
Qiqihar, Heilongjiang
G. Xu
Китай
Guopeng Xu
Qiqihar, Heilongjiang
Y. Liu
Китай
Yang Liu
Qiqihar, Heilongjiang
Z. Wang
Китай
Zhou Wang
Qiqihar, Heilongjiang
Y. Feng
Китай
Yongming Feng
Qiqihar, Heilongjiang
X. Sun
Китай
Xinyu Sun
Qiqihar, Heilongjiang
References
1. V. S. Suvith, V. S. Devu, D. Philip, Ceram. Int., 46, No. 1, 786–794 (2020), https://doi.org/10.1016/j.ceramint.2019.09.033.
2. S. A. Aladejare, Res. Policy, 78, 102909 (2022), https://doi.org/10.1016/j.resourpol.2022.102909.
3. Y. Fu, J. Li, Nanomaterials, 9, No. 3, 359 (2019), https://doi.org/10.3390/nano9030359.
4. M. Y. Xie, K. Y. Su, X. Y. Peng, et al., J. Taiwan Institute of Chemical Engineers, 70, 161–167 (2017), https://doi.org/10.1016/j.jtice.2016.10.034.
5. T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Chem. Rev., 116, 5987–6041 (2016), https://doi.org/10.1021/acs.chemrev.5b00603.
6. J. Li, N. Wu, Catal. Sci. Technol., 5, 1360–1384 (2015), https://doi.org/10.1039/C4CY00974F.
7. S.-M. Lam, J.-C. Sin, A. R. Mohamed, Mater. Sci. Semicond. Process, 47, 62–84 (2016), https://doi.org/10.1016/j.mssp.2016.02.019.
8. W. Jin, H. Wang, Y. Liu, S. Yang, J. Zhou, W. Chen, ACS Appl. Nano Mater., 5, 10485–10494 (2022), https://doi.org/10.1021/acsanm.2c01819.
9. T. A. Dontsova, A. S. Kutuzova, K. O. Bila, et al., J. Nanomaterials, 8349480 (2020), https://doi.org/10.1155/2020/8349480.
10. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, et al., J. Mater. Sci.: Mater. Electron., 25, No. 2, 730–735 (2014), https://doi.org/10.1007/s10854-013-1637-9.
11. A. E. Shalan, I. Osama, M. M. Rashad, et al., J. Mater. Sci.: Mater. Electron., 25, No. 1, 303–310 (2014), https://doi.org/10.1007/s10854-013-1586-3.
12. G. Mendoza-Damián, F. Tzompantzi, R. Pérez-Hernández, et al., Catalysis Today, 266, 82–89 (2016). https://doi.org/10.1016/j.cattod.2015.11.029.
13. S. A. Ansari, M. M. Khan, M. O. Ansari, et al., New J. Chem., 38, No. 6, 2462–2469 (2014), https://doi.org/10.1039/C3NJ01488F.
14. Z. He, J. Zhou, Mod. Res. Catalysis, 2, 13–18 (2013), http://dx.doi.org/10.4236/mrc.2013.23A003.
15. A. Kar, J. Olszówka, S. Sain, et al., J. Alloys and Compd., 810, 151718 (2019).
16. Y. Liu, D. Pan, M. Xiong, et al., Chin. J. Catalysis, 41, No. 10, 1554–1563 (2020).
17. S. Gorduk, J. Mol. Struct., 1198, 126921 (2019), https://doi.org/10.1016/j.molstruc.2019.126921.
18. M. A. Deyab, G. Mele, J. Power Sources, 443, 227264 (2019), https://doi.org/10.1016/j.jpowsour.2019.227264.
19. X. Li, T. Zhang, Y. Chen, Y. Fu, J. Su, L. Guo, Chem. Eng. J., 382, 122783 (2019), https://doi.org/10.1016/j.cej.2019.122783.
20. S. Moradian, H. Dezhampanah, J. B. Ghasemi, H. Behnejad, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 227, 117621 (2020), https://doi.org/10.1016/j.saa.2019.117621.
21. H. Yakan, M. S. Çavuş, E. Güzel, et al., J. Mol. Struct., 1202, 127259 (2020), https://doi.org/10.1016/j.molstruc.2019.127259.
22. E Boutin, M Wang, J C Lin, et al., Angew. Chem. Int. Ed., 58, No. 45, 16172–16176 (2019), https://doi.org/10.1002/anie.201909257.
23. M. Wang, K. Torbensen, D. Salvatore, et al., Nature Commun., 10, No. 1, 1–8 (2019), https://doi.org/10.1038/s41467-019-11542-w.
24. E. T. Saka, E. Dügdü, Y. Ünver, J. Coord. Chem., 72, No. 5-7, 1119–1130 (2019), https://doi.org/10.1080/00958972.2019.1589461.
25. L. A. Leal, W. F. da Cunha, L. A. Ribeiro Jr, et al., J. Mol. Modeling, 23, No. 5, 1–6 (2017), https://doi.org/10.1007/s00894-017-3338-4.
26. B. Mecheri, A. Ficca, M. Oliveira, et al., Appl. Catalysis B: Environ., 237, No. 5, 699–707 (2018), https://doi.org/10.1016/j.apcatb.2018.06.031.
27. H. Ahn, Y. C. Huang, C. W. Lin, et al., ACS Appl. Mater. Interfaces, 10, No. 34, 29145–29152 (2018), https://doi.org/10.1021/acsami.8b09378.
28. A. Atxabal, M. Ribeiro, S. Parui, et al., Nature Comm., 7, No. 1, 1–7 (2016), https://doi.org/10.1038/ncomms13751.
29. R. Milan, G. Singh Selopal, M. Cavazzini, et al., Sci. Rep., 10, No. 1, 1–9 (2020), https://doi.org/10.1038/s41598-020-58310-1.
30. N. K. Subbaiyan, F. D'Souza, Chem. Commun., 48, No. 30, 3641–3643 (2012), https://doi.org/10.1039/C2CC30614J.
31. H. Ghafuri, F. Mohammadi, R. Rahimi, et al., RSC Adv., 87, No. 6, 83947–83953 (2016), https://doi.org/10.1039/C6RA17712C.
32. G. Zhang, J. Ren, B. Liu, et al., Inorg. Chim. Acta, 471, 782–787 (2018), https://doi.org/10.1016/j.ica.2017.12.025.
33. Y. Yin, G. Xu, Z. Xin, et al., J. Coord. Chem., 75, No. 3-4, 535–547 (2022), https://doi.org/10.1080/00958972.2022.2058396.
34. J. Fang, H. Mao, J. Wu, et al., Appl. Surface Sci., 119, No. 3-4, 237–241 (1997), https://doi.org/10.1016/S0169-4332(97)00195-5.
35. H. Imahori, T. Umeyama, S. Ito, Acc. Chem. Res., 42, No. 11, 1809–1818 (2009), https://doi.org/10.1021/ar900034t.
Review
For citations:
Yin Y., Jiang B., Xu G., Liu Y., Wang Z., Feng Y., Sun X. A New Type of Composite Catalyst α-nBACoPc/SnO2 Synergistic Photo-Catalytic Degradation of Dyes. Zhurnal Prikladnoii Spektroskopii. 2024;91(4):615.
JATS XML





















