Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

QUANTUM CHEMICAL CALCULATIONS OF THE SPECTROSCOPIC PROPERTIES AND NONLINEAR OPTICAL ACTIVITY OF 2,6-DIBROMO-3-CHLORO-4-FLUOROANILINE

Abstract

The Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectra of 2,6-dibromo-3-chloro-4-fluoroaniline in the solid phase were recorded and analyzed. Quantum chemical calculations of the optimized molecular structure, energies, nonlinear optical (NLO) analysis, molecular surfaces, and vibrational analysis of this substance were performed. The obtained results on the geometric structure and vibrational frequencies were compared with the observed data. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies also confirm that charge transfer occurs within the molecule. The detailed vibrational assignments were performed using the HF and DFT calculations, and the potential energy distribution (PED) was obtained by the vibrational energy distribution analysis (VEDA4) program. Finally, the effects of the amino, bromo, chloro, and fluoro substituents on the vibrational frequencies were investigated.

About the Authors

A. . Eşme
Kocaeli University
Russian Federation


S. G. Sağdınç
Kocaeli University
Russian Federation


References

1. J. Whysner, L. Vera, G. M. Williams, Pharmacol. Ther., 71, 107-112 (1996).

2. H. Tanak, J. Mol. Struct. (Theochem), 905, 5-12 (2010).

3. M. E. Vaschetto, B. A. Retamal, A. P. Monkman, J. Mol. Struct. (Theochem), 468, 209-221 (1996).

4. M. Kubota, S. Ohba, Acta Crystallogr. B: Struct. Sci., 48, 849-854 (1992).

5. B. K. Sarojini, B. Narayana, H. S. Yathirajan, T. Gerber, B. van Brecht, R. Betz, Acta Crystallogr. E: Struct. Rep., 69, 240-248 (2013).

6. R. D. Willett, Inorg. Chem., 40, 966-971 (2001).

7. C. Glidewell, J. N. Low, J. M. S. Skakle, J. L. Wardell, Acta Crystallogr. C: Cryst. Struct. Commun., 61, 336-338 (2005).

8. U. S. Ali, W. A. Siddiqui, A. Ashraf, M. N. Tahir, Acta Crystallogr. E: Struct. Rep. Online, 68, 1904-1909 (2012).

9. R. Betz, Crystallogr. Rep., 60, 1049-1052 (2015).

10. Gaussian 09, Revision A.11.4, Gaussian, Inc., Wallingford CT (2009).

11. GaussView, Version 5.0.9, Semichem. Inc., Shawnee Mission KS (2009).

12. A. D. Becke, J. Chem. Phys., 98, 5648-5652 (1993).

13. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 37, 785-789 (1988).

14. M. H. Jamroz, Vibrational Energy Distribition Analysis (VEDA 4) Program, Warsaw, Poland (2004).

15. M. Bakiler, I. V. Maslov, S. Akyüz, J. Mol. Struct., 482, 379-383 (1999).

16. M. Bakiler, I. V. Maslov, S. Akyüz, J. Mol. Struct., 475, 83-92 (1999).

17. E. Kavitha, N. Sundaraganesa, S. Sebastian, Indian J. Pure Appl. Phys., 48, 20-30 (2010).

18. L.E. Sutton, Tables of Interatomic Distances, Chemical Society, London (1958).

19. R. G. Pearson, Proc. Natl. Acad. Sci. USA, 83, 8440-8441 (1986).

20. M. Karelson, V. S. Lobanov, A. R. Katritzky, Chem. Rev., 96, 1027-1044 (1996).

21. T. C. Koopmans, Physica (Amsterdam), 1, 104-112 (1934).

22. Chemical Application of Atomic and Molecular Electrostatic Potentials, Eds. P. Politzer, D. G. Truhlar, Plenum Press, New York (1981). 1015-10

23. C. Andraud, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot, A. Collet, J. Am. Chem. Soc., 116, 2094-2103 (1994).

24. J. P. Abraham, D. Sajan, I. H. Joe, V. S. Jayakumar, Spectrochim. Acta A, 71, 355-367 (2008).

25. P. Karamanis, C. Pouchan, G. Maroulis, Phys. Rev. A, 77, 013201-013203 (2008).

26. S. G. Sağdinc, A. Eşme, Spectrochim. Acta A, 75, 1370-1376 (2010).

27. Ü. Ceylan, G. Ö. Tarı, H. Gökçe, E. Ağar, J. Mol. Struct., 1, 1110-1122 (2016).

28. V. Arjunan, S. Mohan, J. Mol. Struct., 892, 289-299 (2008).

29. V. Arjunan, S. Mohan, Spectrochim. Acta A, 72A, 436-444 (2009).

30. H. F. Hameka, J. O. Jensen, J. Mol. Struct. (Theochem), 362, 325-330 (1996).

31. J. O. Jensen, A. Banerjee, C. N. Merrow, D. Zeroka, J. M. Lochner, J. Mol. Struct. (Theochem), 531, 323-331 (2000).

32. A. P. Scott, L. Radom, J. Phys. Chem., 100, 16502-16513 (1996).

33. M. P. Andersson, P. Uvdal, J. Chem. Phys. A, 109, 2937-2941 (2005).

34. M. Alcolea Palafox, M. Gill, N. J. Nunez, V. K. Rastogi, L. Mittal, Int. J. Quant. Chem., 103, 394-421 (2005).

35. M. Alcolea Palafox, Int. J. Quant. Chem., 77, 661-684 (2000).

36. V. Arjunan, P. Ravindran, T. Rani, S. Mohan, J. Mol. Struct., 988, 91-101 (2011).

37. V. Arjunan, P. S. Balamourougane, C. V. Mythili, S. Mohan, V. Nandhakumar, J. Mol. Struct., 1006, 247-258 (2011).

38. S. Muthu, A. Prabakaran, Spectrochim. Acta A, 121, 420-429 (2014).

39. M. M. El-Nahass, M. A. Kamel, A. F. El-deeb, A. A. Atta, S. Y. Huthaily, Spectrochim. Acta A, 79, 443-450 (2011).

40. H. Singh, S. Singh, A. Srivastava, P. Tandon, P. Bharti, S. Kumar, R. Maurya, Spectrochim. Acta A, 120, 405-415 (2014).

41. E. F. Mooney, Spectrochim. Acta A, 20, 1021-1032 (1964).

42. C. S. Hiremath, J. Yenagi, J. Tonannavar, Spectrochim. Acta A, 68, 710-717 (2007).

43. G. Socrates, Infrared Characteristic Group Frequencies, John Wiley, GB (1980).

44. S. Guidara, H Feki, Y. Abid, Spectrochim. Acta A, 133, 856-866 (2015).

45. P. M. Wojciechowski, W. Zierkiewicz, D. Michalska, P. Hobza, J. Chem. Phys., 118, 1090-1092 (2003).

46. S. Muthu, J. Uma Maheswari, Spectrochim. Acta A, 92, 154-163 (2012).

47. X. Song, M. Yang, E. R. Davidson, J. P. Reilly, J. Chem. Phys., 99, 3224-3233 (1993).


Review

For citations:


Eşme A., Sağdınç S.G. QUANTUM CHEMICAL CALCULATIONS OF THE SPECTROSCOPIC PROPERTIES AND NONLINEAR OPTICAL ACTIVITY OF 2,6-DIBROMO-3-CHLORO-4-FLUOROANILINE. Zhurnal Prikladnoii Spektroskopii. 2017;84(6):1015(1)-1015(10). (In Russ.)

Views: 221


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)