Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

TRANSVERSELY EXCITED ATMOSPHERIC CO2 LASER-INDUCED PLASMA SPECTROSCOPY FOR THE DETECTION OF HEAVY METALS IN SOIL

Abstract

A rapid detection of heavy metals in soil was presented by the metal-assisted gas plasma method using specific characteristics of a pulsed, transversely excited atmospheric (TEA) CO2 laser. The soil particles were placed in a hole made of acrylic plate. The sample was covered by a to prevent the soil particles from being blown off. The mesh also functioned to initiate a luminous plasma. When a TEA CO2 laser (1500 mJ, 200 ns) was focused on the soil sample, passing through the metal mesh, some of the laser energy was used to generate the gas plasma on the mesh surface, and the remaining laser energy was employed to ablate the soil particles. The fine, ablated soil particles moved into the gas plasma region to be dissociated and excited. Using this technique, analysis can be made with reduced sample pretreatment, and therefore a rapid analysis can be performed efficiently. The results proved that the signal to noise ratio (S/N) of the emission spectral lines is much better for the case of the present method (mesh method) compared to the case of standard laser-induced breakdown spectroscopy using the pellet method. Rapid detection of heavy metal elements in soil has been successfully carried out. The detection limits of Cu and Hg in soil were estimated to be 3 and 10 mg/kg, respectively. The present method has good potential for rapid and sensitive detection of heavy metals in soil samples.

About the Authors

A. . Khumaeni
Diponegoro University; School of Postgraduate Studies (SPS), Diponegoro University
Russian Federation


H. . Sugito
Diponegoro University
Russian Federation


W. . Setia Budi
Diponegoro University
Russian Federation


A. . Yoyo Wardaya
Diponegoro University
Russian Federation


References

1. N. Nanos, J. A. R. Martin, Geoderma, 189-190, 554-562 (2012).

2. Q. Zhang, J. Ye, J. Chen, H. Xu, C. Wang, M. Zhao, Environ. Pollut., 185, 258-265 (2014).

3. X. Liu, Q. Song, Y. Tang, J. Xu, J. Wu, F. Wang, P. C. Brookes, Sci. Total Environ., 463-464, 530-540 (2013).

4. Z. Li, Z. Ma, T. J. v. d. Kuijp, Z. Yuan, L. Huang, Sci. Total Environ., 468-469, 843-853 (2014).

5. L. A. Hutton, G. D. O`Neil, T. L. Read, Z. J. Ayrest, M. E. Newton, J. V. Macpherson, Anal. Chem., 86, 4566-4572 (2014)

6. J. Q. McComb, C. Rogers, F. X. Han, P. B. Tchounwou, Water, Air, Soil Pollut., 225, 2169 (2014).

7. J. Zhao, X. Yan, T. Zhou, J. Wang, H. Li, P. Zhang, H. Ding, L. Ding, J. Anal. At. Spectrom., 30, 1920-1926 (2015).

8. K. Rifai, S. Laville, F. Vidal, M. Sabsabi, M. Chaker, J. Anal. At. Spectrom., 27, 276-283 (2012).

9. E. M. Cahoon, J. R. Almirall, Anal. Chem., 84, 2239-2244 (2012).

10. C. M. Li, Z. M. Zou, X. Y. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, Y. F. Lu, X. Y. Zeng, J. Anal. At. Spectrom., 29, 1432-1437 (2014).

11. P. Yaroshchyk, D. L. Death, S. J. Spencer, J. Anal. At. Spectrom., 27, 92-98 (2012).

12. A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. V. Rao, P. P. Kiran, S. P. Tewari, G. M. Kumar, Talanta, 87, 53-59 (2011).

13. E. M. Cahoon, J. R. Almirall, Appl. Opt., 49, C49-C57 (2010).

14. D. A. Cremers, L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley and Sons, Ltd., Chichester (2006).

15. A. W. Miziolek, V. Palleschi, I. Schechter, Laser-induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications, Cambridge University Press (2006).

16. S. C. Jantzi, J. R. Almirall, Anal. Bioanal. Chem., 400, 3341-3351 (2011).

17. V. S. Burakov, S. N. Raikov, N. V. Tarasenko, M. V. Belkov, V. V. Kiris, J. Appl. Spectrosc., 77, 595-608 (2010).

18. M. Dell`Aglio, R. Gaudiuso, G. S. Senesi, A. D. Giacomo, C. Zaccone, T. M. Miano, O. D. Pascale, J. Environ. Monit., 13, 1422-1426 (2011).

19. E. C. Ferreira, J. A. G. Neto, D. M. B. P. Milori, E. J. Ferreira, Spectrochim. Acta B, 110, 96-99 (2015).

20. A. M. Popov, M. O. Kozhnov, S. M. Zaytsev, N. B. Zorov, T. A. Labutin, J. Appl. Spectrosc., 82, 739-743 (2015).

21. A. Khumaeni, Z. S. Lie, Y. I. Lee, K. Kurihara, K. Kagawa, H. Niki, Appl. Spectrosc., 65, 236-241 (2011).

22. A. Khumaeni, H. Niki, K. Fukumoto, Y. Deguchi, K. Kurihara, K. Kagawa, Y. I. Lee, Curr. Appl. Phys., 11, 423-427 (2011).

23. A. Khumaeni, Z. S. Lie, W. Setiabudi, K. H. Kurniawan, K. Kagawa, J. Phys.: Conf. Ser., 622, 012057 (2015). 1016-7

24. M. Ramli, N. Idris, H. Niki, K. H. Kurniawan, K. Kagawa, Jpn. J. Appl. Phys., 47, 688-694 (2008).

25. A. Khumaeni, Z. S. Lie, H. Niki, Y. I. Lee, K. Kurihara, M. Wakasugi, T. Takahashi, K. Kagawa, Appl. Opt., 51, B121-B129 (2012).

26. A. Khumaeni, Z. S. Lie, Y. I. Lee, K. Kurihara, K. H. Kurniawan, K. Fukumoto, K. Kagawa, H. Niki, Jpn. J. Appl. Phys., 51, 082403 1-9 (2012).

27. J. D. Ingle Jr., S. R. Crouch, Spectrochemical Analysis, Prentice Hall, New Jersey (1988).


Review

For citations:


Khumaeni A., Sugito H., Setia Budi W., Yoyo Wardaya A. TRANSVERSELY EXCITED ATMOSPHERIC CO2 LASER-INDUCED PLASMA SPECTROSCOPY FOR THE DETECTION OF HEAVY METALS IN SOIL. Zhurnal Prikladnoii Spektroskopii. 2017;84(6):1016(1)-1016(7). (In Russ.)

Views: 220


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)