Synthesis and Structure Study of MAX-Phases (Cr2/3Ti1/3)3AlC2 and Cr1.5Ti0.5AlC Obtained by High-Temperature Sintering in Vacuum
Abstract
Using vacuum sintering at 1300ºC of Cr, Al, graphite, and TiC or Ti powders, we obtained products consisting of two MAX phases: 312 and 211, the predominant formation of which depends on the type of precursor – TiC or Ti. In the synthesis from Cr:Al:TiC:C, the MAX phase 312 (Cr2/3Ti1/3)3AlC2 predominates, while in the synthesis from Cr:Al:Ti:C, the MAX phase 211 Cr1.5Ti0.5AlC predominates. α-Al2O3, carbides, and chromium oxides are present in the samples as impurities. A combination of X-ray diffraction and X-ray photoelectron spectroscopy methods made it possible to reveal significant differences in the chemical and phase composition of the surface and bulk of the samples. It was established that aluminum and chromium oxides, as well as Cr7C3 carbide, are formed on the surface of MAX phases during synthesis, similar to what occurs during the thermal oxidation of Cr2AlC and the formation of a protective layer of α-Al2O3/Cr7C3 on the surface. Formation of the protective layer is essential for producing Cr–Ti–Al–C-based materials with high thermochemical stability in aggressive environments.
About the Authors
E. A. OvodokBelarus
Minsk
M. I. Ivanovskaya
Belarus
Minsk
A. E. Seleznev
Russian Federation
Moscow
S. V. Zlotsky
Belarus
Minsk
V. V. Uglov
Belarus
Minsk
A. A. Vereschaka
Russian Federation
Moscow
References
1. L. Toth. Transition Metal Carbides and Nitrides, New York and London, Academic Press (1971)
2. H. J. Goldschmidt. Interstitial Alloys B.1, London, Butterworths (1967)
3. M. W. Barsoum. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, Wiley-VCH, Germany (2013), https://doi.org/10.1002/9783527654581
4. D. J. Tallman, B. Anasori, M. W. Barsoum. Mater. Res. Lett., 1 (2013) 115-125, https://doi.org/10.1080/21663831.2013.806364
5. L. Shen. Autonomous crack healing in Cr2AlC and Ti2AlC MAX phase. Dissertation (TU Delft), Delft University of Technology (2016), https://doi.org/10.4233/uuid:bece20f8-1d72-425e-b4b1-5d817e54f762
6. Z. Liu, E. Wu, J. Wang, Y. Qian, H. Xiang, X. Li, Q. Jin, G. Sun, X. Chen, J. Wang, M. Li. Acta Mater., 73 (2014) 186-193, https://doi.org/10.1016/j.actamat.2014.04.006
7. Z. Liu, L. Zheng, L. Sun, Y. Qian, J. Wang, M. Li. J. Am. Ceram. Soc., 97 (2013) 67-69, https://doi.org/10.1111/jace.12731
8. J. C. Schuster, H. Nowotny, C. Vaccaro. J. Solid State Chem., 32 (1980) 213, https://doi.org/10.1016/0022-4596(80)90569-1
9. E. A. Levashov, Y. S. Pogozhev, D. V. Shtansky, M. I. Petrzhik. Russ. J. Non-Ferrous Metals, 50 (2009) 151-159, https://doi.org/10.3103/S1067821209020151.
10. M. W. Barsoum. J. Electrochem. Soc., 148 (2001) 544-550, https://doi.org/10.1149/1.1380255
11. Z. Lin, Y. Zhou, M. Li, J. Wang. Int. J. Mater. Res., 96 (2022) 291-296, https://doi.org/10.3139/ijmr-2005-0051
12. J. Haemers, R. Gusmão, Z. Sofer. Small Methods, 4 (2020) 190780, https://doi.org/10.1002/smtd.201900780
13. D. Briggs, M. P. Seah. Practical Surface Analysis by Auger and X‐ray Photoelectron Spectroscopy, John Wiley and Sons Ltd. Chichester (1983)
14. B. Anasori, M. Dahlqvist, J. Halim, E. J. Moon, J. Lu, B. C. Hosler, E. N. Caspi, S. J. May, L. Hultman, P. Eklund, J. Rosén, M. W. Barsoum. J. Appl. Phys. 118 (2015) 094304, https://doi.org/10.1063/1.4929640.
15. E. A. Ovodok, M. I. Ivanovskaya, A. E. Seleznev, S. V. Zlotsky, V. V. Uglov, E. Sotova. J. Appl. Spectr., 92 (2025) 63-70, https://doi.org/10.1007/s10812-025-01879-0
16. E. A. Ovodok, M. I. Ivanovskaya, A. E. Seleznev, S. V. Zlotsky, V. V. Uglov, A. A. Vereschaka. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 29 (2025) 9-21, https://doi.org/10.1615/HighTempMatProc.2024056816.
17. E. A. Ovodok, M. I. Ivanovskaya, S. K. Poznyak, A. M. Maltanova, I. I. Azarko, M. Micusik, M. Omastava, A. Aniskevich. Thin Solid Films, 771 (2023) 139759, https://doi.org/10.1016/j.tsf.2023.139759
18. A. V. Linde, A. A. Kondakov, I. A. Studenikin, N. A. Kondakova, V. V. Grachev. Powder Metallurgy аnd Functional Coatings, 4 (2022) 25-33, https://doi.org/10.17073/1997-308X-2022-4-25-33
19. X. H. Wang, Y. C. Zhou. Mater. Res. Innovations, 7 (2003) 381-390, https://doi.org/10.1007/s10019-003-0278-7
20. W. Tian, P. Wang, Y. Kan, G. Zhang. J. Mater. Sci., 43 (2008) 2785-2791, https://doi.org/10.1007/s10853-008-2516-2
21. Z. J. Lin, M. S. Li, J. Y. Wang, Y. C. Zhou. Acta Mater., 55 (2007) 6182-6191, https://doi.org/10.1016/j.actamat.2007.07.024
22. Z. J. Lin, Y. C. Zhou, M. S. Li. J. Mater. Sci. Technol., 23 (2007) 721-746
23. . M. Naguib, M. W. Barsoum, Y. Gogotsi. Adv. Mater., 33 (2021) 2103393, https://doi.org/10.1002/adma.202103393
24. M. I. Ivanovskaya, E. A. Ovodok, S. K. Poznyak, D. A. Kotsikau, I. A. Svito. J. Appl. Spectr., 89 (2022) 644-651, https://doi.org/10.1007/s10812-022-01405-6
Review
For citations:
Ovodok E.A., Ivanovskaya M.I., Seleznev A.E., Zlotsky S.V., Uglov V.V., Vereschaka A.A. Synthesis and Structure Study of MAX-Phases (Cr2/3Ti1/3)3AlC2 and Cr1.5Ti0.5AlC Obtained by High-Temperature Sintering in Vacuum. Zhurnal Prikladnoii Spektroskopii. 2025;92(6):753-760. (In Russ.)





















