Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Synthesis and Structure Study of MAX-Phases (Cr2/3Ti1/3)3AlC2 and Cr1.5Ti0.5AlC Obtained by High-Temperature Sintering in Vacuum

Abstract

Using vacuum sintering at 1300ºC of Cr, Al, graphite, and TiC or Ti powders, we obtained products consisting of two MAX phases: 312 and 211, the predominant formation of which depends on the type of precursor – TiC or Ti. In the synthesis from Cr:Al:TiC:C, the MAX phase 312 (Cr2/3Ti1/3)3AlC2 predominates, while in the synthesis from Cr:Al:Ti:C, the MAX phase 211 Cr1.5Ti0.5AlC predominates. α-Al2O3, carbides, and chromium oxides are present in the samples as impurities. A combination of X-ray diffraction and X-ray photoelectron spectroscopy methods made it possible to reveal significant differences in the chemical and phase composition of the surface and bulk of the samples. It was established that aluminum and chromium oxides, as well as Cr7C3 carbide, are formed on the surface of MAX phases during synthesis, similar to what occurs during the thermal oxidation of Cr2AlC and the formation of a protective layer of α-Al2O3/Cr7C3 on the surface. Formation of the protective layer is essential for producing Cr–Ti–Al–C-based materials with high thermochemical stability in aggressive environments.

About the Authors

E. A. Ovodok
Research Institute of Physical and Chemical Problems of Belarusian State University
Belarus

Minsk



M. I. Ivanovskaya
Research Institute of Physical and Chemical Problems of Belarusian State University
Belarus

Minsk



A. E. Seleznev
Moscow State Technological University “STANKIN”
Russian Federation

Moscow



S. V. Zlotsky
Belarusian State University
Belarus

Minsk



V. V. Uglov
Belarusian State University
Belarus

Minsk



A. A. Vereschaka
Institute of Design and Technological Informatics of the Russian Academy of Sciences
Russian Federation

Moscow



References

1. L. Toth. Transition Metal Carbides and Nitrides, New York and London, Academic Press (1971)

2. H. J. Goldschmidt. Interstitial Alloys B.1, London, Butterworths (1967)

3. M. W. Barsoum. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, Wiley-VCH, Germany (2013), https://doi.org/10.1002/9783527654581

4. D. J. Tallman, B. Anasori, M. W. Barsoum. Mater. Res. Lett., 1 (2013) 115-125, https://doi.org/10.1080/21663831.2013.806364

5. L. Shen. Autonomous crack healing in Cr2AlC and Ti2AlC MAX phase. Dissertation (TU Delft), Delft University of Technology (2016), https://doi.org/10.4233/uuid:bece20f8-1d72-425e-b4b1-5d817e54f762

6. Z. Liu, E. Wu, J. Wang, Y. Qian, H. Xiang, X. Li, Q. Jin, G. Sun, X. Chen, J. Wang, M. Li. Acta Mater., 73 (2014) 186-193, https://doi.org/10.1016/j.actamat.2014.04.006

7. Z. Liu, L. Zheng, L. Sun, Y. Qian, J. Wang, M. Li. J. Am. Ceram. Soc., 97 (2013) 67-69, https://doi.org/10.1111/jace.12731

8. J. C. Schuster, H. Nowotny, C. Vaccaro. J. Solid State Chem., 32 (1980) 213, https://doi.org/10.1016/0022-4596(80)90569-1

9. E. A. Levashov, Y. S. Pogozhev, D. V. Shtansky, M. I. Petrzhik. Russ. J. Non-Ferrous Metals, 50 (2009) 151-159, https://doi.org/10.3103/S1067821209020151.

10. M. W. Barsoum. J. Electrochem. Soc., 148 (2001) 544-550, https://doi.org/10.1149/1.1380255

11. Z. Lin, Y. Zhou, M. Li, J. Wang. Int. J. Mater. Res., 96 (2022) 291-296, https://doi.org/10.3139/ijmr-2005-0051

12. J. Haemers, R. Gusmão, Z. Sofer. Small Methods, 4 (2020) 190780, https://doi.org/10.1002/smtd.201900780

13. D. Briggs, M. P. Seah. Practical Surface Analysis by Auger and X‐ray Photoelectron Spectroscopy, John Wiley and Sons Ltd. Chichester (1983)

14. B. Anasori, M. Dahlqvist, J. Halim, E. J. Moon, J. Lu, B. C. Hosler, E. N. Caspi, S. J. May, L. Hultman, P. Eklund, J. Rosén, M. W. Barsoum. J. Appl. Phys. 118 (2015) 094304, https://doi.org/10.1063/1.4929640.

15. E. A. Ovodok, M. I. Ivanovskaya, A. E. Seleznev, S. V. Zlotsky, V. V. Uglov, E. Sotova. J. Appl. Spectr., 92 (2025) 63-70, https://doi.org/10.1007/s10812-025-01879-0

16. E. A. Ovodok, M. I. Ivanovskaya, A. E. Seleznev, S. V. Zlotsky, V. V. Uglov, A. A. Vereschaka. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 29 (2025) 9-21, https://doi.org/10.1615/HighTempMatProc.2024056816.

17. E. A. Ovodok, M. I. Ivanovskaya, S. K. Poznyak, A. M. Maltanova, I. I. Azarko, M. Micusik, M. Omastava, A. Aniskevich. Thin Solid Films, 771 (2023) 139759, https://doi.org/10.1016/j.tsf.2023.139759

18. A. V. Linde, A. A. Kondakov, I. A. Studenikin, N. A. Kondakova, V. V. Grachev. Powder Metallurgy аnd Functional Coatings, 4 (2022) 25-33, https://doi.org/10.17073/1997-308X-2022-4-25-33

19. X. H. Wang, Y. C. Zhou. Mater. Res. Innovations, 7 (2003) 381-390, https://doi.org/10.1007/s10019-003-0278-7

20. W. Tian, P. Wang, Y. Kan, G. Zhang. J. Mater. Sci., 43 (2008) 2785-2791, https://doi.org/10.1007/s10853-008-2516-2

21. Z. J. Lin, M. S. Li, J. Y. Wang, Y. C. Zhou. Acta Mater., 55 (2007) 6182-6191, https://doi.org/10.1016/j.actamat.2007.07.024

22. Z. J. Lin, Y. C. Zhou, M. S. Li. J. Mater. Sci. Technol., 23 (2007) 721-746

23. . M. Naguib, M. W. Barsoum, Y. Gogotsi. Adv. Mater., 33 (2021) 2103393, https://doi.org/10.1002/adma.202103393

24. M. I. Ivanovskaya, E. A. Ovodok, S. K. Poznyak, D. A. Kotsikau, I. A. Svito. J. Appl. Spectr., 89 (2022) 644-651, https://doi.org/10.1007/s10812-022-01405-6


Review

For citations:


Ovodok E.A., Ivanovskaya M.I., Seleznev A.E., Zlotsky S.V., Uglov V.V., Vereschaka A.A. Synthesis and Structure Study of MAX-Phases (Cr2/3Ti1/3)3AlC2 and Cr1.5Ti0.5AlC Obtained by High-Temperature Sintering in Vacuum. Zhurnal Prikladnoii Spektroskopii. 2025;92(6):753-760. (In Russ.)

Views: 24


ISSN 0514-7506 (Print)