Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

X-Ray Photoelectron Spectroscopy in an Atmosphere of High-Purity Argon as a Method of Studying Functional Materials Using Copper Amalgams as an Example

Abstract

The composition and oxidized state of metals in copper amalgam samples obtained by direct reduction of metals (copper and mercury) in an aqueous solution were studied with X-ray photoelectron spectroscopy (XPS) in the atmosphere of high-purity argon 6.0. The use of XPS in a high-purity argon medium allowed one to exclude the influence of oxygen admixtures in the residual atmosphere of the spectrometer to the state of the amalgam surface and the investigation results. It is shown that the order of metal ions reduction in an aqueous solution of formaldehyde affects the content of oxidized forms of copper. With simultaneous reduction of copper and mercury, the resulting amalgam contains an impurity of 5–7 at. % copper in the form of copper(I) oxide and 8–10 at. % in the form of copper(II) oxide. During the sequential reduction of copper for the first and then mercury, the resulting amalgam contains an impurity of 11–14 at. % copper in the form of copper(II) oxide. During the reduction of copper by washing the resulting powder with dilute acid and subsequent reduction of mercury, the resulting amalgam contains an impurity of 9–11 at. % copper in the form of copper(I) oxide. The state of mercury in the amalgam does not depend on the order of metal reduction.

About the Authors

M. Yu. Alies
Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Institute of Mechanics
Russian Federation

Izhevsk



E. Yu. Shelkovnikov
Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Institute of Mechanics
Russian Federation

Izhevsk



F. F. Chausov
Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Institute of Mechanics
Russian Federation

Izhevsk



N. V. Lomova
Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Institute of Mechanics
Russian Federation

Izhevsk



N. Yu. Isupov
Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Institute of Mechanics
Russian Federation

Izhevsk



References

1. E. Niknam, H. Naffakh-Moosavy. J. Hazard. Mater. Adv., 18 (2025) 100732, https://doi.org/10.1016/j.hazadv.2025.100732

2. W. Yang, S. Chen, W. Ren, Y. Zhao, X. Chen, C. Jia, J. Liu, C. Zhao. J. Mater. Chem. A, 7 (2019) 15907, https://doi.org/10.1039/c9ta03611c

3. T. Mussini, P. Longhi, S. Rondinini. Pure Appl. Chem., 57 (1985) 169—179, https://doi.org/10.1351/pac198557010169

4. A. Danhel, J. Barek. Current Org. Chem., 15 (2011) 2957—2969, https://doi.org/10.2174/138527211798357218

5. M. M. Carnasciali, G. A. Costa. J. Alloys Compd., 317-318 (2001) 491—496, https://doi.org/10.1016/S0925-8388(00)01376-1

6. E. A. Markova, N. M. Chernitsova, Y. S. Borodaev, L. S. Dubakina, O. E. Yushko-Zakharova. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 109, N 2 (1980) 206—211

7. M. Fleischer, G. Y. Chao, C. A. Francis, A. Pabst. Am. Mineralogist, 66 (1981) 217—220, https://rruff.info/uploads/AM66_217.pdf

8. H.-J. Bernhardt, K. Schmetzer. Neues Jahrbuch für Mineralogie, Monatshefte (1992) 21—28

9. F. Lihl. Zeitschrift für Metallkunde, 44 (1953) 160—166, https://doi.org/10.1515/ijmr-1953-440411

10. F. Schoszberger. Zeitschrift für Physikalische Chemie, 29B, N 1 (1935) 65—78, https://doi.org/10.1515/zpch-1935-2905

11. K. Siegbahn, C. Nordling, A. Fahlman, K. Nordberg, J. Hedman, G. Johansson, T. Bergmark, S.-E. Karlsson, I. Lindgren, B. Lindberg. ESCA. Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy, Uppsala, Nova Acta Regiae Societatis Scientarium Upsalensis (1967)]

12. D. Briggs, M. P. Seach. Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, Chichester, John Wiley and Sons Ltd. (1983)

13. L. K. Herrera, A. Duran, M. L. Franquelo, A. R. González-Elipe, J. P. Espinós, J. Rubio-Zuazo, G. R, Castro, A. Justo, J. L. Perez-Rodriguez. Central Eur. J. Chem., 7, N 1 (2009) 47—53, https://doi.org/10.2478/s11532-008-0089-1

14. T. Hanawai, H. Takahashi, M. Ota, R. F. Pinizzotto, J. L. Ferracane, T. Okabei. J. Dental Res., 66, N 9 (1987) 1470—1478, https://doi.org/10.1177/00220345870660091201

15. K. Z. Kamali, A. Pandikumar, S. Jayabal, R. Ramaraj, H. N. Lim, B. H. Ong, C. S. D. Bien, Y. Y. Kee, N.M. Huang. Microchim. Acta, 183 (2016) 369—377, https://doi.org/10.1007/s00604-015-1658-6

16. E. Talik, R. Babiarz-Zdyb, A. Dziedzic. J. Alloys Compd., 398 (2005) 276—282, https://doi.org/10.1016/j.jallcom.2005.02.024

17. V. A. Trapeznikov, I. N. Shabanova, A. V. Kholzakov, A. G. Ponomaryov. J. Electron Spectroscopy and Related Phenomena, 137–140 (2004) 383—385, https://doi.org/10.1016/j.elspec.2004.02.115

18. D. A. Shirley. Phys. Rev., 5 (1972) 4709—4714, https://doi.org/10.1103/PhysRevB.5.4709

19. M. Wojdyr. J. Appl. Crystallography, 43 (2010) 1126—1128, https://doi.org/10.1107/S0021889810030499

20. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben. Handbook of X-ray Photoelectron Spectroscopy, Eden Prairie, Perkin-Elmer Corporation (1992)

21. K. Okada, A. Kotani. J. Phys. Soc. Japan, 58, N 7 (1989) 2578—2585, https://doi.org/10.1143/JPSJ.58.2578

22. M. C. Biesinger. Surface and Interface Analysis, 49 (2017) 1325—1334, https://doi.org/10.1002/sia.6239

23. Справочник химика, т. 3, Москва–Ленинград, Химия (1964) 746—749


Review

For citations:


Alies M.Yu., Shelkovnikov E.Yu., Chausov F.F., Lomova N.V., Isupov N.Yu. X-Ray Photoelectron Spectroscopy in an Atmosphere of High-Purity Argon as a Method of Studying Functional Materials Using Copper Amalgams as an Example. Zhurnal Prikladnoii Spektroskopii. 2025;92(6):771-776. (In Russ.)

Views: 18


ISSN 0514-7506 (Print)