X-Ray Photoelectron Spectroscopy in an Atmosphere of High-Purity Argon as a Method of Studying Functional Materials Using Copper Amalgams as an Example
Abstract
The composition and oxidized state of metals in copper amalgam samples obtained by direct reduction of metals (copper and mercury) in an aqueous solution were studied with X-ray photoelectron spectroscopy (XPS) in the atmosphere of high-purity argon 6.0. The use of XPS in a high-purity argon medium allowed one to exclude the influence of oxygen admixtures in the residual atmosphere of the spectrometer to the state of the amalgam surface and the investigation results. It is shown that the order of metal ions reduction in an aqueous solution of formaldehyde affects the content of oxidized forms of copper. With simultaneous reduction of copper and mercury, the resulting amalgam contains an impurity of 5–7 at. % copper in the form of copper(I) oxide and 8–10 at. % in the form of copper(II) oxide. During the sequential reduction of copper for the first and then mercury, the resulting amalgam contains an impurity of 11–14 at. % copper in the form of copper(II) oxide. During the reduction of copper by washing the resulting powder with dilute acid and subsequent reduction of mercury, the resulting amalgam contains an impurity of 9–11 at. % copper in the form of copper(I) oxide. The state of mercury in the amalgam does not depend on the order of metal reduction.
About the Authors
M. Yu. AliesRussian Federation
Izhevsk
E. Yu. Shelkovnikov
Russian Federation
Izhevsk
F. F. Chausov
Russian Federation
Izhevsk
N. V. Lomova
Russian Federation
Izhevsk
N. Yu. Isupov
Russian Federation
Izhevsk
References
1. E. Niknam, H. Naffakh-Moosavy. J. Hazard. Mater. Adv., 18 (2025) 100732, https://doi.org/10.1016/j.hazadv.2025.100732
2. W. Yang, S. Chen, W. Ren, Y. Zhao, X. Chen, C. Jia, J. Liu, C. Zhao. J. Mater. Chem. A, 7 (2019) 15907, https://doi.org/10.1039/c9ta03611c
3. T. Mussini, P. Longhi, S. Rondinini. Pure Appl. Chem., 57 (1985) 169—179, https://doi.org/10.1351/pac198557010169
4. A. Danhel, J. Barek. Current Org. Chem., 15 (2011) 2957—2969, https://doi.org/10.2174/138527211798357218
5. M. M. Carnasciali, G. A. Costa. J. Alloys Compd., 317-318 (2001) 491—496, https://doi.org/10.1016/S0925-8388(00)01376-1
6. E. A. Markova, N. M. Chernitsova, Y. S. Borodaev, L. S. Dubakina, O. E. Yushko-Zakharova. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 109, N 2 (1980) 206—211
7. M. Fleischer, G. Y. Chao, C. A. Francis, A. Pabst. Am. Mineralogist, 66 (1981) 217—220, https://rruff.info/uploads/AM66_217.pdf
8. H.-J. Bernhardt, K. Schmetzer. Neues Jahrbuch für Mineralogie, Monatshefte (1992) 21—28
9. F. Lihl. Zeitschrift für Metallkunde, 44 (1953) 160—166, https://doi.org/10.1515/ijmr-1953-440411
10. F. Schoszberger. Zeitschrift für Physikalische Chemie, 29B, N 1 (1935) 65—78, https://doi.org/10.1515/zpch-1935-2905
11. K. Siegbahn, C. Nordling, A. Fahlman, K. Nordberg, J. Hedman, G. Johansson, T. Bergmark, S.-E. Karlsson, I. Lindgren, B. Lindberg. ESCA. Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy, Uppsala, Nova Acta Regiae Societatis Scientarium Upsalensis (1967)]
12. D. Briggs, M. P. Seach. Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, Chichester, John Wiley and Sons Ltd. (1983)
13. L. K. Herrera, A. Duran, M. L. Franquelo, A. R. González-Elipe, J. P. Espinós, J. Rubio-Zuazo, G. R, Castro, A. Justo, J. L. Perez-Rodriguez. Central Eur. J. Chem., 7, N 1 (2009) 47—53, https://doi.org/10.2478/s11532-008-0089-1
14. T. Hanawai, H. Takahashi, M. Ota, R. F. Pinizzotto, J. L. Ferracane, T. Okabei. J. Dental Res., 66, N 9 (1987) 1470—1478, https://doi.org/10.1177/00220345870660091201
15. K. Z. Kamali, A. Pandikumar, S. Jayabal, R. Ramaraj, H. N. Lim, B. H. Ong, C. S. D. Bien, Y. Y. Kee, N.M. Huang. Microchim. Acta, 183 (2016) 369—377, https://doi.org/10.1007/s00604-015-1658-6
16. E. Talik, R. Babiarz-Zdyb, A. Dziedzic. J. Alloys Compd., 398 (2005) 276—282, https://doi.org/10.1016/j.jallcom.2005.02.024
17. V. A. Trapeznikov, I. N. Shabanova, A. V. Kholzakov, A. G. Ponomaryov. J. Electron Spectroscopy and Related Phenomena, 137–140 (2004) 383—385, https://doi.org/10.1016/j.elspec.2004.02.115
18. D. A. Shirley. Phys. Rev., 5 (1972) 4709—4714, https://doi.org/10.1103/PhysRevB.5.4709
19. M. Wojdyr. J. Appl. Crystallography, 43 (2010) 1126—1128, https://doi.org/10.1107/S0021889810030499
20. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben. Handbook of X-ray Photoelectron Spectroscopy, Eden Prairie, Perkin-Elmer Corporation (1992)
21. K. Okada, A. Kotani. J. Phys. Soc. Japan, 58, N 7 (1989) 2578—2585, https://doi.org/10.1143/JPSJ.58.2578
22. M. C. Biesinger. Surface and Interface Analysis, 49 (2017) 1325—1334, https://doi.org/10.1002/sia.6239
23. Справочник химика, т. 3, Москва–Ленинград, Химия (1964) 746—749
Review
For citations:
Alies M.Yu., Shelkovnikov E.Yu., Chausov F.F., Lomova N.V., Isupov N.Yu. X-Ray Photoelectron Spectroscopy in an Atmosphere of High-Purity Argon as a Method of Studying Functional Materials Using Copper Amalgams as an Example. Zhurnal Prikladnoii Spektroskopii. 2025;92(6):771-776. (In Russ.)





















