Photophysics of Styrylcyanine Molecular Probes in Solutions of Surfactants
Abstract
The nature of the interaction of the dye Sbо ((E)-2-(4-(dimethylamino)styryl)-3-methylbenzo[d]oxazol-3ium iodide) and its homodimer Dbо-10 with micelles of sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX-100) has been studied using absorption and fluorescence spectroscopy. The mechanism of fluorescence quenching of Sbo dye during the formation of complexes with SDS monomers was analyzed. Binding constants (KS) of dye molecules with surfactants and free energy changes (∆G0) for the probe-micelle binding process were determined. Quantum-chemical calculations of the charge distribution and potential energy of the ground and excited states of the dye molecules were carried out, on the basis of which the increase in the values of the quantum yield and the fluorescence lifetime in micelles is explained. Based on the results obtained, it was revealed that dye molecules are localized in the low-polar environment of micelles, where they are isolated from water molecules.
About the Authors
A. Sh. YarmukhamedovUzbekistan
Samarkand
E. N. Kurtaliev
Uzbekistan
Samarkand
I. D. Khairov
Uzbekistan
Samarkand
N. Nizomov
Uzbekistan
Samarkand
References
1. [1] N. Saxena, A. Goswami, P. K. Dhodapkar, M. C. Nihalani, A. Mandal. J. Pet. Sci. Eng., 176 (2019) 299—311, https://doi.org/10.1016/j.petrol.2019.01.052
2. [2] S. Kiani, S. E. Rogers, M. Sagisaka, A. Shirin, A. R. Barron. Energy Fuels, 33 (2019) 3162—3175, https://doi.org/10.1021/acs.energyfuels.9b00391
3. [3] D. R. Pokhrel, M. K. Sah, B. Gautam, H. K. Basak, A. Bhattarai, A. Chatterjee. RSC Adv., 13 (2023) 17685—17704, https://doi.org/10.1039/D3RA02883F
4. [4] N. Azum, M. M. Alotaibi, M. Ali, M. A. Rub, H. M. Marwani, A. Alamry, A. M. Asiri. J. Mol. Liq., 370 (2023) 121057—121065, doi: 10.1016/j.molliq.2022.121057
5. [5] C. N. Kassa, L. T. Salviatto, A. C. Tortamano, K. S. Rost-Lima, C. A. Damante, C. Pavani, A. Deana, I. T. Kato, M. Wainwright, R. A. Prates. Photodiagnosis Photodyn. Ther., 41 (2023) 103194—103199, https://doi.org/10.1016/j.pdpdt.2022.103194
6. [6] S. Iravani. RSC Sustain, 1 (2023) 72—82, https://doi.org/10.1039/D2SU00088A
7. [7] A. V. Lavysh, A. I. Sulatskaya, A. A. Lugovskii, E. S. Voropay, I. M. Kuznetsova, K. K. Turoverov, A. A. Maskevich. J. Appl. Spectr., 81, N 2 (2014) 205—213, https://doi.org/10.1007/s10812-014-9911-z
8. [8] Sh. Sasaki, Y. Niko, A. S. Klymchenko, G. Konishi. Tetrahedron, 70, N 41 (2014) 7551—7559 https://doi.org/10.1016/j.tet.2014.08.002
9. [9] D. Sahoo, S. Chakravorti. J. Photochem. Photobiol., 85 (2009) 1103—1109 https://doi.org/10.1021/jp407342q
10. [10] G. B. Behera, P. K. Behera, B. K. Mishra. J. Surf. Sci. Technol., 23 (2007) 1—31
11. [11] V. B. Kovalska, D. V. Kryvorotenko, A. O. Balanda, M. Yu. Losytskyy, V. P. Tokar, S. M. Yarmoluk. Dyes Pigm., 67 (2005) 47—54, https://doi.org/10.1016/j.dyepig.2004.10.007
12. [12] N. Nizomov, E. N. Kurtaliev, Sh. N. Nizamov, G. Khodjaev. J. Mol. Struct., 936 (2009) 199—205, https://doi.org/10.1016/j.molstruc.2009.07.040
13. [13] E. N. Kurtaliev. Spectrochim. Acta: Mol. Biomol. Spectrosc., 81 (2011) 449—457, https://doi.org/10.1016/j.saa.2011.06.036
14. [14] E. N. Kurtaliev, N. N. Nizomov, A. Sh. Yarmukhamedov. J. Mol. Struct., 1203 (2020) 127395—127403, https://doi.org/10.1016/j.molstruc.2019.127395
15. [15] F. L. Arbeloa, P. R. Ojeda, I. L. Arbeloa. J. Lumin., 44 (1989) 105—112, https://doi.org/10.1016/0022-2313(89)90027-6
16. [16] http://www.openmopac.net.
17. [17] J. P. Stewart. J. Comp. Aided Mol. Desing, 4 (1990) 1—103, https://doi.org/10.1007/BF00128336
18. [18] J. R. Lakowich. Principles of Fluorescence Spectroscopy, New York, Plenum Press (2006)
19. [19] R. K. Mitra, S. S. Sinha. J. Fluores., 18 (2008) 423—432, https://doi.org/10.1007/s10895-007-0282-1
20. [20] S. Mondal, B. Doloi, S. Ghosh. Fluid Phase Equilibria, 360 (2013) 180—187, https://doi.org/10.1016/j.fluid.2013.09.049
21. [21] S. K. Das, A. Bansal, S. K. Dogra. Bull. Chem. Soc. Jpn., 70 (1997) 307—313
22. [22] S. Nigam, M. Belletete, R. S. Sarpal, G. Durocher. J Chem. Soc. Faraday Trans., 91 (1995) 2133—2139, https://doi.org/10.1039/FT9959102133
23. [23] M. S. Bakshi. Cryst. Growth. Des., 16 (2016) 1104—1133, https://doi.org/10.1021/acs.cgd.5b01465
24. [24] A. R. Tehrani-Bagha, K. Holmberg. Materials, 6 (2013) 580—608, https://doi.org/10.3390/ma6020580
25. [25] G. Karlstrom, B. Halle. J. Chem. Soc. Faraday Trans., 1 (1989) 1049—1063
26. [26] T. S. Singh, S. Mitra. J. Colloid Interface Sci., 311 (2007) 128—134, https://doi.org/10.1016/j.jcis.2007.02.046
27. [27] A. I. Sulatskaya, M. I. Sulatsky, O. I. Povarova, N. P. Rodina, I. M Kuznetsova, A. A. Lugovskii, E. S. Voropay, A. V. Lavysh, A. A. Maskevich, K. K. Turoverov. Dyes Pigm., 157 (2018) 385—395, https://doi.org/10.1016/j.dyepig.2018.05.006
Review
For citations:
Yarmukhamedov A.Sh., Kurtaliev E.N., Khairov I.D., Nizomov N. Photophysics of Styrylcyanine Molecular Probes in Solutions of Surfactants. Zhurnal Prikladnoii Spektroskopii. 2025;92(6):793-801. (In Russ.)





















