Electronic Properties and Optical Anisotropy of LiV3O8 Compound: Density Functional Theory Insight
Abstract
The electronic and optical properties of the LiV3O8 compound have been investigated using first-principles simulations within the density functional theory (DFT) framework. This promising material could be advantageous for battery applications. To better describe its semiconducting character, the Hubbard U correction combined with the generalized gradient approximation (GGA) was employed. Furthermore, the GGA+U approach provides an effective description of the electronic structure arising from the strong localization of 3d electrons in transition metals such as vanadium. The electronic structure results revealed that LiV3O8 exhibits a semiconducting behavior with a band gap located in the visible spectrum. Additionally, the optoelectronic properties of LiV3O8, including the optical absorption and reflectivity spectra, were computed, revealing an optical anisotropy in the low-energy range up to 12.5 eV. The optical absorption results further illustrated that the threshold light absorption occurs in the visible region, indicating potential applications in optoelectronic devices.
About the Authors
A. K. KushwahaIndia
Bhadohi
J. Al-Otaibi
Saudi Arabia
Riyadh
Z. I. Y. Booq
Saudi Arabia
Riyadh
F. Barakat
Saudi Arabia
Riyadh
H. Alshehri
Saudi Arabia
Riyadh
G. Alsowygh
Saudi Arabia
Riyadh
A. Laref
Saudi Arabia
Riyadh
F. T. Nya
Cameroon
Maroua
S. Chowdhury
Thailand
Songkhla
References
1. K. Nassau, D. Murphy, J. Non-Crystal. Solids, 44, 297 (1981).
2. G. Pistoia, L. Li, G. Wang, Electrochim. Acta, 37, 63 (1992).
3. P. Novak, W. Scheifele, O. Hass, J. Power Source, 54, 497 (1995).
4. N. Kumagai, A. Yu, K. West, J. Appl. Electrochem., 27, 953 (1997).
5. J. Kawakita, T. Miura, T. Kishi, Solid State Ionics, 124, 21 (1999).
6. R. Tossici, R. Murassi, M. Berrettoni, S. Stizza, G. Pistoia, Solid State Ionics, 57, 227 (1992).
7. G. Pistoia, M. Pasquali, G. Wang, L. Li, J. Electrochem. Soc. (USA), 137, 2365 (1990), doi: 10.1149/1.2086945.
8. L. Zhu, Z. Wang, L. Wang, L. Xie, J. Li, X. Cao, Chem. Eng. J., 364, 503–513 (2019).
9. L. Zhu, L. Xie, X. Cao, ACS Appl. Mater. Interfaces, 10, 10909–10917 (2018).
10. Z. Chen, F. Xu, S. Cao, Z. Li, H. Yang, X. Ai, Y. Cao, Small, 13, 1603148 (2017).
11. L. Zhu, W. Li, L. Xie, Q. Yang, X. Cao, Chem. Eng. J., 372, 1056–1065 (2019).
12. P. S. Kumar, S. Ayyasamy, E. S. Tok, S. Adams, M. V. Reddy, ACS Omega, 3, 3036–3044 (2018).
13. J. Shi, D. Xiao, M. Ge, X. Yu, Y. Chu, X. Huang, X. Zhang, Y. Yin, X. Yang, Y. Guo, L. Gu, L. Wan, Adv. Mater., 30, 1705575 (2018).
14. J. Kawakita, M. Majima, T. Miura, T. Kishi, J. Power Sources, 66, 135 (1997).
15. S. Panero, M. Pasquali, G. Pistoia, J. Electrochem. Soc. (USA), 130 (1983).
16. M. Li, C. Pei, F. Xiong, S. Tan, Y. Yin, H. Tang, D. Huang, Q. An, L. Mai, Electrochim. Acta, 320, 134556 (2019).
17. L. Zhu, L. Xie, C. Bao, X. Yan, X. Cao, Int. J. Energy Res., 44, 298–308 (2020).
18. R. Zhang, J. Luo, P. Lu, K. Zhu, T. Xie, P. Wang, C. Sun, F. Yang, Z. Xing, Y. Wang, J. Liu, Ceram. Int., 45, 2968–2976 (2019).
19. K. Y. Bae, G. D. Park, B. H. Kim, S. H. Cho, Y. C. Kang, K. D. Lee, W. Y. Yoon, J. Electrochem. Soc., 165, A2919–A2924 (2018).
20. L. Wang, Z. Wang, L. Xie, L. Zhu, X. Cao, ACS Appl. Mater. Interfaces, 11, 16619–16628 (2019).
21. T. Partheeban, M. Sasidharan, J. Mater. Sci., 55, 2155–2165 (2020).
22. K. Y. Bae, Y. H. Jung, S. H. Cho, B. H. Kim, W. Y. Yoon, J. Alloys Compd., 784, 704–711 (2019).
23. X. Cao, J. Liu, L. Zhu, L. Xie, Energy Technol., 7, 1800759 (2019).
24. L. D. Picciotto, K. Adendorff, D. Liles, M. Thackeray, Solid State Ionics, 62, 297 (1993).
25. S. Jouanneau, A. Verbaereand, D. Guyomard, J. Solid State Chem., 178, 22 (2005).
26. X. Zhang, R. Frech, Electrochim. Acta, 43, 861 (1997).
27. G. Pistoia, M. D. Vona, P. Tagliatesta, Solid State Ionics, 24, 103 (1987).
28. A. Hammou, A. Hammouche, Electrochim. Acta, 33, 1719 (1988).
29. J. Kawakita, Y. Katayama, T. Miura, T. Kishi, Solid State Ionics, 110, 199 (1998).
30. M. Onoda, I. Amemiya, J. Phys.: Cond. Matter, 15, 3079 (2003).
31. T. Maxisch, F. Zhou, G. Ceder, Phys. Rev. B, 73, 104301 (2006).
32. D. Chotsawat, Maneerat, Lappawat Ngamwongwan, Paratee Komen, Pariwut Falun, Sirichok Jungthawan, Anchalee Junkaew, Suwit Suthirakun, J. Phys. Chem. C, 126, No. 43, 18216–18228 (2022).
33. E. Zhang, Qing, Alexander B. Brady, Christopher J. Pelliccione, David C. Bock, Andrea M. Bruck, Jing Li, Varun Sarbada, et al., Chem. Materials, 29, No. 5, 2364–2373 (2017).
34. P. Blaha, K. Schwarz, G. K. Madsen, H. Kvasnicka, D. Luitz, J. Wien, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (2001).
35. P. J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 78, 1396 (1996).
36. S. Dudarev, G. Botton, S. Savrasov, C. Humphreys, A. Sutton, Phys. Rev. B, 57, 1505 (1998)
37. A. Zhou, et al., Phys. Rev. B, 70, 235121 (2004).
38. B. Islam, et al., J. Mater. Chem., 13, 2349–2354 (2003).
39. C. Park, et al., Solid State Ionics, 230, 74–81 (2013).
40. C. Ambrosch-Draxl, J. O. Sofo, Comp. Phys. Commun., 175, 1–14 (2006).
Review
For citations:
Kushwaha A.K., Al-Otaibi J., Booq Z.Y., Barakat F., Alshehri H., Alsowygh G., Laref A., Nya F.T., Chowdhury S. Electronic Properties and Optical Anisotropy of LiV3O8 Compound: Density Functional Theory Insight. Zhurnal Prikladnoii Spektroskopii. 2025;92(6):820.





















