Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Electronic Properties and Optical Anisotropy of LiV3O8 Compound: Density Functional Theory Insight

Abstract

The electronic and optical properties of the LiV3O8 compound have been investigated using first-principles simulations within the density functional theory (DFT) framework. This promising material could be advantageous for battery applications. To better describe its semiconducting character, the Hubbard U correction combined with the generalized gradient approximation (GGA) was employed. Furthermore, the GGA+U approach provides an effective description of the electronic structure arising from the strong localization of 3d electrons in transition metals such as vanadium. The electronic structure results revealed that LiV3O8 exhibits a semiconducting behavior with a band gap located in the visible spectrum. Additionally, the optoelectronic properties of LiV3O8, including the optical absorption and reflectivity spectra, were computed, revealing an optical anisotropy in the low-energy range up to 12.5 eV. The optical absorption results further illustrated that the threshold light absorption occurs in the visible region, indicating potential applications in optoelectronic devices.

About the Authors

A. K. Kushwaha
Department of Physics, K.N. Govt. P.G. College, Gyanpur
India

Bhadohi



J. Al-Otaibi
Department of Physics and Astronomy, College of Science, King Saud University, Riyadh
Saudi Arabia

Riyadh



Z. I. Y. Booq
Department of Physics and Astronomy, College of Science, King Saud University, Riyadh
Saudi Arabia

Riyadh



F. Barakat
Department of Physics and Astronomy, College of Science, King Saud University, Riyadh
Saudi Arabia

Riyadh



H. Alshehri
Department of Physics and Astronomy, College of Science, King Saud University, Riyadh
Saudi Arabia

Riyadh



G. Alsowygh
Department of Physics and Astronomy, College of Science, King Saud University, Riyadh
Saudi Arabia

Riyadh



A. Laref
Department of Physics and Astronomy, College of Science, King Saud University, Riyadh
Saudi Arabia

Riyadh



F. T. Nya
University of Maroua, High National College of Technology, Department of Energy and Environment; University of Maroua, Faculty of Science, Department of Physics, Materials Science Laboratory
Cameroon

Maroua



S. Chowdhury
Faculty of Environmental Management, Prince of Songkla University; Environmental Assessment and Technology for Hazardous Waste Management Research Centre, Faculty of Environmental Management, Prince of Songkla University
Thailand

Songkhla



References

1. K. Nassau, D. Murphy, J. Non-Crystal. Solids, 44, 297 (1981).

2. G. Pistoia, L. Li, G. Wang, Electrochim. Acta, 37, 63 (1992).

3. P. Novak, W. Scheifele, O. Hass, J. Power Source, 54, 497 (1995).

4. N. Kumagai, A. Yu, K. West, J. Appl. Electrochem., 27, 953 (1997).

5. J. Kawakita, T. Miura, T. Kishi, Solid State Ionics, 124, 21 (1999).

6. R. Tossici, R. Murassi, M. Berrettoni, S. Stizza, G. Pistoia, Solid State Ionics, 57, 227 (1992).

7. G. Pistoia, M. Pasquali, G. Wang, L. Li, J. Electrochem. Soc. (USA), 137, 2365 (1990), doi: 10.1149/1.2086945.

8. L. Zhu, Z. Wang, L. Wang, L. Xie, J. Li, X. Cao, Chem. Eng. J., 364, 503–513 (2019).

9. L. Zhu, L. Xie, X. Cao, ACS Appl. Mater. Interfaces, 10, 10909–10917 (2018).

10. Z. Chen, F. Xu, S. Cao, Z. Li, H. Yang, X. Ai, Y. Cao, Small, 13, 1603148 (2017).

11. L. Zhu, W. Li, L. Xie, Q. Yang, X. Cao, Chem. Eng. J., 372, 1056–1065 (2019).

12. P. S. Kumar, S. Ayyasamy, E. S. Tok, S. Adams, M. V. Reddy, ACS Omega, 3, 3036–3044 (2018).

13. J. Shi, D. Xiao, M. Ge, X. Yu, Y. Chu, X. Huang, X. Zhang, Y. Yin, X. Yang, Y. Guo, L. Gu, L. Wan, Adv. Mater., 30, 1705575 (2018).

14. J. Kawakita, M. Majima, T. Miura, T. Kishi, J. Power Sources, 66, 135 (1997).

15. S. Panero, M. Pasquali, G. Pistoia, J. Electrochem. Soc. (USA), 130 (1983).

16. M. Li, C. Pei, F. Xiong, S. Tan, Y. Yin, H. Tang, D. Huang, Q. An, L. Mai, Electrochim. Acta, 320, 134556 (2019).

17. L. Zhu, L. Xie, C. Bao, X. Yan, X. Cao, Int. J. Energy Res., 44, 298–308 (2020).

18. R. Zhang, J. Luo, P. Lu, K. Zhu, T. Xie, P. Wang, C. Sun, F. Yang, Z. Xing, Y. Wang, J. Liu, Ceram. Int., 45, 2968–2976 (2019).

19. K. Y. Bae, G. D. Park, B. H. Kim, S. H. Cho, Y. C. Kang, K. D. Lee, W. Y. Yoon, J. Electrochem. Soc., 165, A2919–A2924 (2018).

20. L. Wang, Z. Wang, L. Xie, L. Zhu, X. Cao, ACS Appl. Mater. Interfaces, 11, 16619–16628 (2019).

21. T. Partheeban, M. Sasidharan, J. Mater. Sci., 55, 2155–2165 (2020).

22. K. Y. Bae, Y. H. Jung, S. H. Cho, B. H. Kim, W. Y. Yoon, J. Alloys Compd., 784, 704–711 (2019).

23. X. Cao, J. Liu, L. Zhu, L. Xie, Energy Technol., 7, 1800759 (2019).

24. L. D. Picciotto, K. Adendorff, D. Liles, M. Thackeray, Solid State Ionics, 62, 297 (1993).

25. S. Jouanneau, A. Verbaereand, D. Guyomard, J. Solid State Chem., 178, 22 (2005).

26. X. Zhang, R. Frech, Electrochim. Acta, 43, 861 (1997).

27. G. Pistoia, M. D. Vona, P. Tagliatesta, Solid State Ionics, 24, 103 (1987).

28. A. Hammou, A. Hammouche, Electrochim. Acta, 33, 1719 (1988).

29. J. Kawakita, Y. Katayama, T. Miura, T. Kishi, Solid State Ionics, 110, 199 (1998).

30. M. Onoda, I. Amemiya, J. Phys.: Cond. Matter, 15, 3079 (2003).

31. T. Maxisch, F. Zhou, G. Ceder, Phys. Rev. B, 73, 104301 (2006).

32. D. Chotsawat, Maneerat, Lappawat Ngamwongwan, Paratee Komen, Pariwut Falun, Sirichok Jungthawan, Anchalee Junkaew, Suwit Suthirakun, J. Phys. Chem. C, 126, No. 43, 18216–18228 (2022).

33. E. Zhang, Qing, Alexander B. Brady, Christopher J. Pelliccione, David C. Bock, Andrea M. Bruck, Jing Li, Varun Sarbada, et al., Chem. Materials, 29, No. 5, 2364–2373 (2017).

34. P. Blaha, K. Schwarz, G. K. Madsen, H. Kvasnicka, D. Luitz, J. Wien, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (2001).

35. P. J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 78, 1396 (1996).

36. S. Dudarev, G. Botton, S. Savrasov, C. Humphreys, A. Sutton, Phys. Rev. B, 57, 1505 (1998)

37. A. Zhou, et al., Phys. Rev. B, 70, 235121 (2004).

38. B. Islam, et al., J. Mater. Chem., 13, 2349–2354 (2003).

39. C. Park, et al., Solid State Ionics, 230, 74–81 (2013).

40. C. Ambrosch-Draxl, J. O. Sofo, Comp. Phys. Commun., 175, 1–14 (2006).


Review

For citations:


Kushwaha A.K., Al-Otaibi J., Booq Z.Y., Barakat F., Alshehri H., Alsowygh G., Laref A., Nya F.T., Chowdhury S. Electronic Properties and Optical Anisotropy of LiV3O8 Compound: Density Functional Theory Insight. Zhurnal Prikladnoii Spektroskopii. 2025;92(6):820.

Views: 23


ISSN 0514-7506 (Print)