Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Numerical Simulation of High-Order-Mode Generation in a Plano-Concave Resonator with a Cavity Mirror Bearing a Non-Reflective Band

Abstract

A formula based on the Fresnel–Kirchhoff diffraction integral formula, which yields the self-reproducing mode of a plano-concave resonator with a non-reflective band on the cavity mirror, was derived and converted into a discrete numerical integral. The Fox–Li iterative method was then used to obtain the self-reproducing mode of the resonator. The results reveal that the non-reflective band transforms the laser mode from the fundamental Hermite–Gaussian (HG) mode to a distributional characteristic that resembles that of high-order HG modes, albeit with minor differences. Therefore, placement of a straight non-reflective band on the cavity mirror of a plano-concave resonator conveniently generates laser field distributions with features of highorder modes.

About the Authors

K. Li
School of Electrical and Mechanical Engineering, Henan Key Laboratory of Research for Central Plains Ancient Ceramics, Yaoshan Laboratory, Pingdingshan University
China

Pingdingshan, Henan



W. Bie
Henan Province Engineering Research Center of Ultrasonic Technology Application, Pingdingshan University
China

Pingdingshan



S. Xie
School of Electrical and Mechanical Engineering, Henan Key Laboratory of Research for Central Plains Ancient Ceramics, Yaoshan Laboratory, Pingdingshan University
China

Pingdingshan, Henan



J. Wang
School of Information Engineering, Pingdingshan University
China

Pingdingshan, Henan



X. Song
School of Electrical and Mechanical Engineering, Henan Key Laboratory of Research for Central Plains Ancient Ceramics, Yaoshan Laboratory, Pingdingshan University
China

Pingdingshan, Henan



Y. Xue
School of Electrical and Mechanical Engineering, Henan Key Laboratory of Research for Central Plains Ancient Ceramics, Yaoshan Laboratory, Pingdingshan University
China

Pingdingshan, Henan



M. Tian
School of Electrical and Mechanical Engineering, Henan Key Laboratory of Research for Central Plains Ancient Ceramics, Yaoshan Laboratory, Pingdingshan University
China

Pingdingshan, Henan



References

1. J. Huo, B. Zhang, C. Li, M. Luo, T. Chen, L. Guo, A. Luo, N. Zhao, J. Li, Q. Zhang, Sci. Technol. Weld. J., 28, No. 5, 407 (2023).

2. X. Song, K. Li, K. Dai, X. Wang, H. Du, H. Zhao, Optik, 249, 168214 (2022).

3. K. Li, X. Wang, J. Wang, P. Yang, G. Tian, X. Li, J. Appl. Spectrosc., 91, 1149–1155 (2024).

4. S. Zhao, Y. Zhao, Z. Hou, Z. Wang, Spectrochim. Acta B: At. Spectrosc., 203, 106666 (2023).

5. W. Yan, J. Lv, C. Zhu, Q. Li, J. Chen, L. Kang, B. Lu, X. Li, J. Anal. At. Spectrometry, 38, 1232–1237 (2023).

6. Q. Wang, Y. Liu, L. Jiang, A. Chen, J. Han, M. Jin, Anal. Chim. Acta, 1241, 340802 (2023).

7. I. Traparić, M. Ivković, Eur. Phys. J. D, 77, 30 (2023).

8. C. Li, J. Tan, M. Luo, W. Chen, Y. Huang, J. Gu, N. Zhao, J. Li, H. Yang, Q. Zhang, Opt. Laser Eng., 161, 107329 (2023).

9. S. Sato, M. Ishigure, H. Inaba, Conf. on Lasers and Electro-Optics, CWF49 (1991).

10. S. Sato, M. Ishigure, H. Inaba, Electron. Lett., 27, 1831–1832 (1991).

11. L. Novotny, E. J. Sánchez, X. S. Xie, Ultramicroscopy, 71, 21–29 (1998).

12. A. V. Failla, H. Qian, H. Qian, A. Hartschuh, A. J. Meixner, Nano Lett., 6, 1374–1378 (2006).

13. V.-H. Le, A.-T. Le, R.-H. Xie, C. Lin, Phys. Rev. A, 76, 013414 (2007).

14. R. Esteban, R. Vogelgesang, J. Dorfmuller, A. Dmitriev, C. Rockstuhl, C. Etrich, K. Kern, Nano Lett., 8, 3155–3159 (2008).

15. S. Khonina, S. Alferov, S. Karpeev, Opt. Lett., 38, No. 17, 3223–3226 (2013).

16. Y. Arita, J. Lee, H. Kawaguchi, R. Matsuo, K. Miyamoto, K. Dholakia, T. Omatsu, Opt. Lett., 45, No. 14, 4080–4083 (2020).

17. A. Valle, IEEE J. Quantum Electron., 34, 1924–1932 (1998).

18. A. A. Ishaaya, N. Davidson, G. Machavariani, E. Hasman, A. A. Friesem, IEEE J. Quantum Electron., 39, 74–82 (2003).

19. A. A. Ishaaya, N. Davidson, A. A. Friesem, Opt. Express, 13, 4952–4962 (2005).

20. S.-C. Chu, Y.-T. Chen, K.-F. Tsai, K. Otsuka, Opt. Express, 20, 7128–7141 (2012).

21. D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, A. Forbes, Nat. Photonics, 10, 327–332 (2016).

22. L. Wang, J. Xu, J. Lu, L. Teng, Z. Luo, F. Pang, X. Zeng, Nanophotonics, 10, 3527–3539 (2021).

23. V. Sharma, S. Chaitanya Kumar, G. Samanta, M. Ebrahim-Zadeh, Opt. Express, 30, 1195–1204 (2022).

24. T. Liu, M. Tian, Q. Sheng, S. Fu, W. Shi, J. Yao, Infrared Phys. Techn., 141, 105459 (2024).

25. Y. Zhang, A. Yan, Y. Qi, J.-Q. Lü, J. An, Q. Sheng, Z. Bai, Y. Wang, Z. Lu, Appl. Phys. Lett., 125, 071105 (2024).

26. J. Xu, Q. Zhang, X. Shan, Y. Miao, X. Gao, Optik, 183, 124–130 (2019).

27. D. Deng, C. Wei, K. Yi, J. Shao, Z. Fan, Y. Tian, Opt. Commun., 258, 43–50 (2006).

28. L. Dongxiong, C. Junruo, L. Junchang, Appl. Optics, 45, 3158–3162 (2006).

29. Z. Yang, J. Meng, G. Liu, Z. Cong, Z. Zhao, Z. Liu, Infrared Phys. Techn., 136, 104933 (2024).

30. S. Ranganathan, S. M. Oak, Appl. Optics, 47, No. 2, 147–152 (2008).

31. G. Liu, Z. Zhang, C. Li, J. Meng, T. Li, Z. Zhao, Z. Cong, J. Yao, Z. Liu, Appl. Optics, 61, 7330–7335 (2022).

32. Jie Peng, Jianhua Zhu, Tong Li, Opt. Commun., 368, 20–26 (2016).

33. D. Martin-Sanchez, J. Li, E. Z. Zhang, P. C. Beard, J. A. Guggenheim, Opt. Express, 31, 16523–16534 (2023).

34. S. Zhang, T. Chen, X. Liu, H. Zhang, J. Wang, H. Guo, Third Optics Frontier Conference, 195–199 (2023).

35. M. Xu, Y. Fang, M. Hu, S. Cheng, H. Li, M. Bi, X. Zhou, C. Liu, H. Yan, L. Chen, Opt. Commun., 530, 129119 (2023).

36. H. Zou, L. Zhou, Z. Yang, Int. Symposium on Photonics and Optoelectronics, 59–64 (2015).


Review

For citations:


Li K., Bie W., Xie S., Wang J., Song X., Xue Y., Tian M. Numerical Simulation of High-Order-Mode Generation in a Plano-Concave Resonator with a Cavity Mirror Bearing a Non-Reflective Band. Zhurnal Prikladnoii Spektroskopii. 2025;92(6):821.

Views: 13


ISSN 0514-7506 (Print)