High-Resolution Molecular Spectroscopy in Environmental Monitoring: an Experimental Study
Abstract
Developments of molecular resolution spectroscopy have been key in environmental sensing, where the specificity and accuracy of analysis of the molecules in the atmosphere have been identified with high precision. An experimental analysis of the uses of molecular spectroscopy for the detection and measurement of minor compounds, emissions, and other climatic occurrences is discussed. Thanks to the analysis of changes in the spectra of different molecules, the environmental conditions and evaluation of the dynamics of pollutants with high accuracy is also possible. To track carbon dioxide, methane, nitrous oxide, and other greenhouse gases, aerosols, and toxic chemicals, we have carried out experiments with Fourier-transform infrared spectroscopy, cavity ring-down spectroscopy, and laser-induced fluorescence. It is also demonstrated that the integration of these technologies with drone-based remote sensing is being tested to explore new ways for realtime global environment monitoring. This paper shows how high-resolution spectroscopy revolutionized environmental studies have given policy-makers essential information on sustainable environment management.
About the Author
D. K. KafiIraq
Dhaidan Khalaf Kafi
Fallujah
References
1. E. Benhelal, E. Shamsaei, M. I. Rashid, J. Environ. Sci. (China), 104, 84–101 (2021).
2. S. Adjei, S. Elkatatny, J. Petroleum Sci. and Eng., 195, 107911 (2020).
3. J. M. Belbute, A. M. Pereira, Energy Policy, 144, 111642 (2020).
4. D. K. Kafi, A. N. Ayyash, Spectrosc. Lett., 55, 636–647 (2022).
5. M. T. Kolo, M. U. Khandaker, Y. M. Amin, W. H. B. Abdullah, D. A. Bradley, K. S. Alzimami, Res. Phys., 11, 755–762 (2018).
6. C. Durastanti, L. Moretti, Appl. Sci. (Switzerland), 10, No. 22, 1–23 (2020).
7. S. Gupta, B. N. Mohapatra, M. Bansal, Current Res. Green and Sust. Chem., 3, 100019 (2020).
8. V. Bhakar, K. S. Sangwan, A. K. Digalwar, Proc. CIRP, 90, 449–454 (2020).
9. E. Ekinci, Y. Kazancoglu, S. K. Mangla, Sci. Total Environ., 715, 136948 (2020).
10. J. Rissman, C. Bataille, E. Masanet, N. Aden, W. R. Morrow, N. Zhou, N. Elliott, R. Dell, N. Heeren, B. Huckestein, J. Cresko, S. A. Miller, J. Roy, P. Fennell, B. Cremmins, T. Koch Blank, D. Hone, E. D. Williams, S. de la Rue du Can, B. Sisson, M. Williams, J. Katzenberger, D. Burtraw, G. Sethi, H. Ping, D. Danielson, H. Lu, T. Lorber, J. Dinkel, J. Helseth, Appl. Energy, 266, 114848 (2020).
11. H. Zhang, Environ. Sci. Technol., 57, No. 8, 4235–4244 (2023).
12. W. Zhao, Atm. Measur. Techniques, 15, No. 4, 931–942 (2022).
13. E. D. Miller, Environ. Sci. Technol., 57, No. 6, 3420–3430 (2023).
14. S. Balsara, P. K. Jain, A. Ramesh, Environ. Poll., 252, 863–878 (2019).
15. D. Consonni, S. De Matteis, B. Dallari, A. C. Pesatori, L. Riboldi, C. Mensi, Environ. Res., 183, 108968 (2020).
16. E. Amrina, I. Kamil, D. Aridharma, Proc. Manufacturing, 43, 674–681 (2020).
Review
For citations:
Kafi D.K. High-Resolution Molecular Spectroscopy in Environmental Monitoring: an Experimental Study. Zhurnal Prikladnoii Spektroskopii. 2025;92(6):822.





















