Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

THE OPTIMAL WAVELENGTHS FOR LIGHT ABSORPTION SPECTROSCOPY MEASUREMENTS BASED ON GENETIC ALGORITHM-PARTICLE SWARM OPTIMIZATION

Abstract

To select the optimal wavelengths in the light extinction spectroscopy measurement, genetic algorithm-particle swarm optimization (GAPSO) based on genetic algorithm (GA) and particle swarm optimization (PSO) is adopted. The change of the optimal wavelength positions in different feature size parameters and distribution parameters is evaluated. Moreover, the Monte Carlo method based on random probability is used to identify the number of optimal wavelengths, and good inversion effects of the particle size distribution are obtained. The method proved to have the advantage of resisting noise. In order to verify the feasibility of the algorithm, spectra with bands ranging from 200 to 1000 nm are computed. Based on this, the measured data of standard particles are used to verify the algorithm.

About the Authors

G. . Tang
Chongqing University
Russian Federation


B. . Wei
Chongqing University
Russian Federation


D. . Wu
Chongqing University; Chongqing Industry Polytechnic College
Russian Federation


P. . Feng
Chongqing University
Russian Federation


J. . Liu
Chongqing University
Russian Federation


Y. . Tang
Chongqing University
Russian Federation


Sh. . Xiong
Chongqing University
Russian Federation


Z. . Zhang
Chongqing University
Russian Federation


References

1. N. N. Wang, G. Zheng, X. S. Cai, Part. Part. Syst. Char., 11, No. 4, 309-314 (1994).

2. L. Ma, R. K. Hanson, Appl. Phys. B: Lasers Opt., 81, No. 4, 567-576 (2005).

3. R. So, R. Vingarzan, K. Jones, M. Pitchford, J. Air Waste Manag., 65, No. 6, 707-720 (2015).

4. M. H. Long, M. X. Su, X. S. Cai, Opt. Instrum., 32, No. 3, 18-22 (2010).

5. R. Todeschini, D. Galvagni, J. L. Vielchez, M. del Olmo, N. Navas, Trends Anal. Chem., 18, No. 2, 93-98 (1999).

6. R. M. Balabina, S. V. Smirnovb, Anal. Chim. Acta, 692, No. 1-2, 63-72 (2011).

7. A. S. Bangalore, R. E. Shaffer, G. W. Small, M. A. Arnold, Anal. Chem., 68, No. 23, 4200-4212 (1996).

8. T. Lestander, R. Leardi, P. Geladi, J. Near Infrared Spectrosc., 11, No. 1, 433 (2003).

9. B. Cheng, D. Z. Chen, X. H. Wu, Chin. J. Anal. Chem., 34, 123-126 (2006).

10. J. Kennedy, R. Eberhart, IEEE Int. Conf. Neural Networks, 4, No. 8, 1942-1948 (1995).

11. J. A. Hageman, M. Streppel, R. Wehrens, L. M. C Buydens, J. Chemom., 17, No. 8-9, 427-437 (2003).

12. L. Wang, X. Jian, X. G. Sun, J. Mod. Opt., 59, No. 21, 1829-1840 (2012).

13. X. G. Sun, H. Tang, G. B. Yuan. Spectrosc. Spect. Anal., 28, No. 9, 1968-1973 (2008).

14. H. Tang, W. B. Zheng, X. X. Li, Opt. Precis. Eng., 18, No. 8, 1691-1698 (2010).

15. L. Wang, X. G. Sun, SPIE: Int. Soc. Opt. Eng., 8201, 82012H (2011).

16. K. Premalatha, A. M. Natarajan, Int. J. Open Probl. Comput. Math., 2, No.4, 597-608 (2009).

17. F. K. Zhang, S. W. Zhang, G. Z. Ba, Adv. Mater. Res., 1014, 404-412 (2014).

18. M. I. Mishchenko, L. D. Travis, A. A. Lacis. Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press, Cambridge, Ch. 2, pp. 31-67 (2002).

19. E. Marioth, B. Koenig, A. H. Krause, S. Loebbecke, Ind. Eng. Chem. Res., 39, No. 12, 4853-4857 (2000).

20. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, Academic Press, New York, Ch. 4, pp. 97-185 (1969).

21. M. Z. Li, D. Wilkinson, Chem. Eng. Sci., 56, No. 10, 3045-3052 (2001).

22. D. L. Phillips, J. ACM, 9, No. 1, 84-97 (1962).

23. S. Twomey, J. ACM, 10, No. 1, 97-101 (1963).

24. B. R. Lienert, J. N. Porter, S. K. Sharma, Appl. Opt., 40, No. 21, 3476-3482 (2001).

25. Q. S. Xu, Y. Z. Liang, Chemometr. Intell. Lab., 56, No. 1, 1-11 (2001).

26. M. Sudhakaran, P. Ajay-D-Vimalraj, T. G. Palanivelu, J. Zhejiang Univ., 8, No. 6, 896-903 (2007).

27. X. M. Yang, J. S. Yuan, J. Y. Yuan, H. N. Mao, Appl. Math. Comput., 189, No. 2, 1205-1213 (2007).

28. P. Rosin, E. Rammler, J. Inst. Fuel, 7, 29-36 (1933).

29. A. Macı́as-Garcı́a, E. M. Cuerda-Correa, M. A. Dı́az-Dı́ez, Mater. Charact., 52, No. 2, 159-164 (2004).

30. M. Jonasz, G. Fournier, Light Scattering by Particles in Water: Theoretical and Experimental Foundations, Academic Press, New York, Ch. 6, pp. 447-559 (2007).

31. M. Daimon, A. Masumura, Appl. Opt., 46, No. 18, 3811-3820 (2007).

32. G. M. Jia, Z. Zhang, G. Z. Zhang, W. H. Xiang, Acta Photon. Sin., 34, No. 10, 1473-1475 (2005).


Review

For citations:


Tang G., Wei B., Wu D., Feng P., Liu J., Tang Y., Xiong Sh., Zhang Z. THE OPTIMAL WAVELENGTHS FOR LIGHT ABSORPTION SPECTROSCOPY MEASUREMENTS BASED ON GENETIC ALGORITHM-PARTICLE SWARM OPTIMIZATION. Zhurnal Prikladnoii Spektroskopii. 2018;85(1):119-128. (In Russ.)

Views: 259


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)