Influence of Composition on the Electronic Structure of Manganites R1-xCaxMnO3 (R = Nd, Gd; x = 0.0, 0.2) According to X-Ray Photoelectron Spectroscopy Data
Abstract
CaMnO3 and R1–xCaxMnO3 (R = Nd, Gd; x = 0.0, 0.2) manganites were studied using X-ray photoelectron spectroscopy (XPS). The core-level spectra of all the elements in the compounds were analyzed. Chemical shifts reflecting the evolution of the ion valence states depending on composition were identified. Based on an analysis of the multiplet splitting of Mn 3s spectra, the effective spin and charge states of Mn ions were determined. The obtained results expand the existing XPS database on the electronic structure of manganites and confirm the effectiveness of this method for analyzing the valence of manganese in complex oxides.
About the Author
S. Kh. EstemirovaRussian Federation
Ekaterinburg
References
1. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer. Phys. Rev. Lett., 71, N 14 (1993) 2331—2333
2. P. Schlottmann. Physica B, 404, N 18 (2009) 2699—2704, https://doi.org/10.1016/j.physb.2009.06.066
3. S. Dong, H. Xiang, E. Dagotto. Nat. Sci. Rev., 6, N 4 (2019) 629—641, https://doi.org/10.1093/nsr/nwz023
4. С. В. Адашкевич, С. А. Маркевич, С. В. Труханов, Г. Г. Федорук. Журн. прикл. спектр., 84 (2017) 664—667 [S. V. Adashkevich, S. A. Markevich, S. V. Trukhanov, G. G. Fedaruk. J. Appl. Spectr., 84, N 4 (2017) 683—686], https://doi.org/10.1007/s10812-017-0530-3
5. С. Х. Эстемирова, А. В. Фетисов, В. Б. Фетисов. Журн. прикл. спектр., 76 (2009) 419—427 [S. K. Estemirova, A. V. Fetisov, V. B. Fetisov. J. Appl. Spectr., 76, N 3 (2009) 394—401], https://doi.org/10.1007/s10812-009-9180-4
6. E. Beyreuther, S. Grafström, L. M. Eng, C. Thiele, K. Dörr. Phys. Rev. B, 73, N 15 (2006) 155425, https://doi.org/10.1103/PhysRevB.73.155425
7. V. R. Galakhov, B. A. Gizhevskii, L. V. Elokhina, N. N. Loshkareva, S. V. Naumov, M. Raekers, M. Neumann, A. M. Balbashov. JETP Lett., 91, N 3 (2010) 129—133, https://doi.org/10.1134/S0021364010030069
8. M. C. Falub, M. Shi, J. Krempasky, K. Hricovini, Ya. M. Mukovskii, M. Neumann, V. R. Galakhov, L. Patthey. Surf. Sci., 575, N 1-2 (2005) 29—34, https://doi.org/10.1016/j.susc.2004.10.053
9. V. V. Mesilov, V. R. Galakhov, S. N. Shamin, B. A. Gizhevskii, S. V. Naumov. J. Struct. Chem., 56, N 3 (2015) 497—503, https://doi.org/10.1134/S0022476615030166
10. Yu. A. Teterin, A. Yu. Teterin. Russ. Chem. Rev., 71, N 5 (2002) 347—381, https://doi.org/10.1070/RC2002v071n05ABEH000717
11. N. Kamegashira, Y. Miyazaki. Mater. Res. Bull., 19, N 9 (1984) 1201—1206, https://doi.org/10.1016/0025-5408(84)90072-2
12. K. Kitayama, H. Ohno, Y. Ide, K. Satoh, S. Murakami. J. Solid State Chem., 166, N 2 (2002) 285—291, https://doi.org/10.1006/jssc.2002.9586
13. S. K. Estemirova, V. F. Balakirev, A. M. Yankin, V. Ya. Mitrofanov, S. A. Uporov, V. M. Kozin, T. I. Filinkova. Glass Phys. Chem., 41, N 3 (2015) 224—231, https://doi.org/10.1134/S1087659615020066
14. R. Kwok. XPS Peak Fitting Program, version 4.1 (2000), http://www.phy.cuhk.edu.hk/~sur- face/XPSPEAK/
15. R. D. Shannon. Acta Cryst. A, 32, N 5 (1976) 751—767, doi.org/10.1107/S0567739476001551
16. K. Siegbahn. ESCA; Atomic, Molecular and Solid States Structure Studied by Means of Electron Spectroscopy, Uneversity of Michigan, Almqvist & Wiksells (1967)
17. C. Zhang, C. Wang, W. Hua, Y. Guo, G. Lu, S. Gil, A. Giroir-Fendler. Appl. Catal. B, 186 (2016) 173—183, https://doi.org/10.1016/j.apcatb.2015.12.052
18. A. Santoni, G. Speranza, M. R. Mancini, F. Padella, L. Petrucci, S. Casadio. J. Phys. Cond. Matter, 11, N 16 (1999) 3387—3396, doi 10.1088/0953-8984/11/16/018
19. L. Wang, H. Xie, X. Wang, G. Zhang, Y. Guo, Y. Guo, G. Lu. Chin. J. Catal., 38, N 8 (2017) 1406—1412, https://doi.org/10.1016/S1872-2067(17)62863-8
20. K. A. Stoerzinger, W. T. Hong, X. R. Wang, R. R. Rao, S. B. Subramanyam, C. Li, T. Venkatesan, Q. Liu, E. J. Crumlin, K. K. Varanasi, Y. Shao-Horn. Chem. Mater., 29, N 23 (2017) 9990—9997, doi: 10.1021/acs.chemmater.7b03399
21. M. J. Dzara, J. M. Christ, P. Joghee, C. Ngo, C. A. Cadigan, G. Bender, R. M. Richards, R. O’Hayre, S. Pylypenko. J. Power Sources, 375 (2018) 265—276, https://doi.org/10.1016/j.jpowsour.2017.08.071
22. R. Dudric, R. Bortnic, G. Souca, R. Ciceo-Lucacel, R. Stiufiuc, R. Tetean. Appl. Surface Sci., 487 (2019) 17—21, https://doi.org/10.1016/j.apsusc.2019.04.233
23. D. Barreca, A. Gasparotto, A. Milanov, E. Tondello, A. Devi, R. A. Fischer. Surface Sci. Spectra, 14, N 1 (2007) 60—67, https://doi.org/10.1116/11.20080703
24. M. E Abrishami, M. Mohammadi, M. Sotoudeh. Crystals, 12, N 12 (2022) 1728, https://doi.org/10.3390/cryst12121728
25. S. P. Kowalczyk, N. Edelstein, F. R. McFeely, L. Ley, D. A. Shirley. Chem. Phys. Lett., 29, N 4 (1974) 491—495, https://doi.org/10.1016/0009-2614(74)85076-1
26. D. F. Mullica, C. K. C. Lok, H. O. Perkins, G. A. Benesh, V. Young. J. Electron Spectrosc. Relat. Phenom., 71, N 1 (1995) 1—20, https://doi.org/10.1016/0368-2048(94)02250-X
27. D. D. Sarma C. N. R. Rao. Electron Spectrosc. Relat. Phenom, 20 (1980) 25—45
28. K. Zhi-jian, L. Li-ping, W. Quan. Chem. Res. Chin. Univ., 12, N 3 (1996) 280—284
29. A. Szytuła, D. Fus, B. Penc, A. Jezierski. J. Alloys Compd., 317-318 (2001) 340—346, https://doi.org/10.1016/S0925-8388(00)01427-4
30. S. P. Kowalczyk, N. Edelstein, F. R. McFeely, L. Ley, D. A. Shirley. Chem. Phys. Lett., 29, N 4 (1984) 491—495
31. W. J. Lademan, A. K. See, L. E. Klebanoff, G. van der Laan. Phys. Rev. B, 54, N 23 (1996) 17191—17198
32. J. Liu, Z. An, W. Zhu, W. Zhang, Y. Liu, H. Wu, L. Liu. Sep. Purif. Technol., 354, N 1 (2025) 128749, https://doi.org/10.1016/j.seppur.2024.128749
33. J. T. Kloprogge, B. J. Wood. Handbook of Mineral Spectroscopy, 1, X-Ray Photoelectron Spectra, Elsevier, Amsterdam, The Netherlands (2020) 505
34. V. Celorrio, L. Calvillo, G. Granozzi, A. E. Russell, D. J. Fermin. Top. Catal., 61, N 1-2 (2018) 154—161, https://doi.org/10.1007/s11244-018-0886-5
35. A. T. Kozakov, A. G. Kochur, V. G. Trotsenko, A. V. Nikolskii, M. El Marssi, B. P. Gorshunov, V. I. Torgashev. J. Alloys Compd., 740 (2018) 132—142, https://doi.org/10.1016/j.jallcom.2018.01.002
36. A. N. Ulyanov, K. I. Maslakov, C. Martin, D.-S. Yang, S. A. Chernyak, V. Markovich, S. V. Savilov. J. Alloys Compd., 820 (2020) 153106, https://doi.org/10.1016/j.jallcom.2019.153106
37. L. Bubnowicz, R. França. Appl. Surface Sci. Adv., 11 (2022) 100306, https://doi.org/10.1016/j.apsadv.2022.100306
38. J.-L. Ortiz-Quiñonez, L. García-González, F. E. Cancino-Gordillo, U. Pal. Mater. Chem. Phys., 246 (2020) 122834, https://doi.org/10.1016/j.matchemphys.2020.122834
39. V. D. Castro, G. Polzonetti. J. Electron Spectrosc. Relat. Phenom., 48 (1989) 117—123, https://doi.org/10.1016/0368-2048(89)80009-X
40. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. St. C. Smart. Appl. Surface Sci., 257, N 7 (2011) 2717—2730, https://doi.org/10.1016/j.apsusc.2010.10.051
41. E. S. Ilton, J. E. Post, P. J. Heaney, F. T. Ling, S. N. Kerisit. Appl. Surface Sci., 366 (2016) 475—485, https://doi.org/10.1016/j.apsusc.2015.12.159
42. F. R. McFeely, S. P. Kowalczyk, L. Ley, D. A. Shirley. Solid State Commun., 15, N 6 (1974) 1051—1054, https://doi.org/10.1016/0038-1098(74)90529-8
43. S.-J. Shih, R. Sharghi-Moshtaghin, M. R. De Guire, R. Goettler, Z. Xing, Z. Liu, A. H. Heuer. J. Electrochem. Soc., 158, N 10 (2011) B1276—B1283, doi 10.1149/1.3625279
44. J. S. Foord, R. B. Jackman, G. C. Allen. Philos. Mag. A, 49, N 5 (1984) 657—663, http://dx.doi.org/10.1080/01418618408233293
45. C. S. Fadley, D. A. Shirley. Phys. Rev. A, 2, N 4 (1970) 1109—1120, https://doi.org/10.1103/PhysRevA.2.1109
Review
For citations:
Estemirova S.Kh. Influence of Composition on the Electronic Structure of Manganites R1-xCaxMnO3 (R = Nd, Gd; x = 0.0, 0.2) According to X-Ray Photoelectron Spectroscopy Data. Zhurnal Prikladnoii Spektroskopii. 2026;93(1):57-68. (In Russ.)
JATS XML





















