Analysis of Stress-Induced Generation of Reactive Oxygen Species in Phalaenopsis ×hybridum Blume Protocorms Using the Redox-Dependent Fluorescent Dihydroethidium Probe
Abstract
Methods for analyzing and studying the most important stress responses of epidermal cells of the protocorms of Phalaenopsis ×hybridum Blume – the synthesis of reactive oxygen species (ROS), in particular, the superoxide anion radical (О2●–) – were developed. Epifluorescence microscopy was adapted for this purpose in combination with the fluorescent probe dihydroethidium and a narrow-band fluorescent filter cube Nikon FITC B-2E/C. This approach made it possible to avoid artifacts arising from intense fluorescence in the red region of the spectrum upon binding of ethidium (a product of nonspecific oxidation of dihydroethidium) to DNA, and to successfully record the signal of 2-hydroxyethidium (2-OH-E+) in the green region of the spectrum, specific for the reaction with О2●–. Using the developed methods, ROS generation in Orchid protocorms subjected to mechanical damage, as well as osmotic and salt stress, was analyzed for the first time. It was shown that the above factors induced О2●–generation in the protocorm epidermis (registered as an increase in 2-OH-E+ fluorescence). The addition of enzymatic and low-molecular antioxidants, such as superoxide dismutase (SOD), catalase, dimethyl sulfoxide (DMSO), and thiourea, reduced stress-induced ROS synthesis in protocorms. The greatest decrease in fluorescence was observed in the presence of SOD and thiourea, indicating the specificity of the reaction of dihydroethidium with О2●–. The developed approaches can be applied to the analysis of the early stages of oxidative imbalance developing in the cells of Orchidaceae and other higher plants under the influence of abiotic stress factors.
About the Authors
M. A. ChernyshBelarus
Minsk
V. S. Matskevich
Belarus
Minsk
S. N. Zvonarev
Belarus
Minsk
A. F. Bakhmetova
Belarus
Minsk
G. N. Smolikova
Russian Federation
Saint Petersburg
S. S. Medvedev
Russian Federation
Saint Petersburg
V. V. Demidchik
Belarus
Minsk, Belarus; Foshan, China
References
1. Т. М. Черевченко, А. Н. Лаврентьева, Р. В. Иванников. Биотехнология тропических и субтропических растений in vitro, Киев, Наукова думка (2008)
2. R. G. Lopez, E. S. Runkle. Hort. Sci., 40, N 7 (2005) 1969—1973
3. J. C. Cardoso, C. A. Zanello, J. T. Chen. Int. J. Mol. Sci., 21, N 3 (2020) 985
4. C. M. Iiyama, J. A. Vilcherrez-Atoche, M. A. Germanà, W. A. Vendrame, J. C. Cardoso. Heredity (Edinb.), 132, N 4 (2024) 163—178
5. Y.-H. Wu, X.-G. Chen, N.-Q. Li, T.-Q. Li, R. Anbazhakan, J.-Y. Gao. Plants, 14, N 7 (2025) 1024
6. K. Balilashaki, S. Gantait, R. Naderi, M. Vahedi. Physiol. Mol. Biol. Plants., 21, N 3 (2015) 341—347
7. K. Y. Paek, E. J. Hahn, S. Y. Park. Methods Mol. Biol., 710 (2011) 293—306
8. E. C. Yeung. Bot. Stud., 58, N 33 (2017) 1—14
9. B. Ravi, C. H. Foyer, G. K. Pandey. Plant Cell Environ., 46, N 7 (2023) 1985—2006
10. T. Xu, J. Niu, Z. Jiang. Front. Plant Sci., 13 (2022) 925863
11. V. Demidchik, S. Shabala. Functional Plant Biology, 45 (2018) 9—27
12. T. Zhu, X. Cheng, C. Li, Y. Li, C. Pan, G. Lu. Front. Plant Sci., 16 (2025) 1560204
13. V. Demidchik. Int. J. Mol. Sci., 19 (2018) 1263
14. V. Demidchik. Environ. Exp. Bot., 109 (2015) 212—228
15. B. Kalyanaraman, M. Hardy, R. Podsiadly, G. Cheng, J. Zielonka. Arch. Biochem. Biophys., 617 (2017) 38—47
16. S. Zvanarou, R. Vágnerová, V. Mackievic, S. Usnich, I. Smolich, A. Sokolik, M. Yu, X. Huang, K. J. Angelis, V. Demidchik. Environ. Exp. Bot., 180 (2020) 104236
17. E. B. Sözer, I. Semenov, P. T. Vernier. Bioelectrochemistry, 160 (2024) 108751
18. M. P. Murphy, H. Bayir, V. Belousov, C. J. Chang, K. J. A. Davies, M. J. Davies, T. P. Dick, T. Finkel, H. J. Forman, Y. Janssen-Heininger, D. Gems, V. E. Kagan, B. Kalyanaraman, N. G. Larsson, G. L. Milne, T. Nyström, H. E. Poulsen, R. Radi, H. Van Remmen, P. T. Schumacker, P. J. Thornalley, S. Toyokuni, C. C. Winterbourn, H. Yin, B. Halliwell. Nat. Metab., 4, N 6 (2022) 651—662
19. G. Fast. Orcideen Kultur, Stuttgart, Ulmer (1980) 460
20. M. Kouhen, A. Dimitrova, G. S. Scippa, D. Trupiano. Biology (Basel), 12, N 2 (2023) 217
21. V. Mackievic, Y. Li, P. Hryvusevich, D. Svistunenko, I. Seregin, A. Kozhevnikova, A. Kartashov, S. Shabala, V. Samokhina, A. Rusakovich, T. A. Cuin, A. Sokolik, X. Li, X. Huang, M. Yu, V. Demidchik. Plant Physiol. and Biochem., 220 (2025) 109227
22. R. P. Alzola, S. M. Siadat, A. Gajjar, R. Stureborg, J. W. Ruberti, J. Delpiano, C. A. DiMarzio. J. Biomed. Opt., 26, N 7 (2021) 076501
23. H. Zhao, S. Kalivendi, H. Zhang, J. Joseph, K. Nithipatikom, J. Vásquez-Vivar, B. Kalyanaraman. Free Radical Biology and Medicine, 34, N 11 (2003) 1359—1368
24. R. Kumar, R. R. Gullapalli. J. Vis. Exp., 203 (2024), doi: 10.3791/66238
25. B. Halliwell, J. M. C. Gutteridge. Free Radicals in Biology and Medicine, 5th еd., New York, Oxford University Press (2015)
26. V. Demidchik. In: Plant Stress Physiology, Ed. S. Shabala, Wallingford, CAB International (2017) 64—96
27. B. Gironi, Z. Kahveci, B. McGill, B. D. Lechner, S. Pagliara, J. Metz, A. Morresi, F. Palombo, P. Sassi, P. G. Petrov. Biophys. J., 119, N 2 (2020) 274—286
28. P. L. Popham, A. Novacky. Plant Physiol., 96, N 4 (1991) 1157—1160
29. A. K. Prasad, P. C. Mishra. Chem. Phys. Lett., 684 (2017) 197—204
30. R. Michalski, B. Michalowski, A. Sikora, J. Zielonka, B. Kalyanaraman. Free Radical Biology and Medicine, 67 (2014) 278—284
31. G. F. Dias, R. S. d. Alencar, P. M. O. d. Viana, I. E. Cavalcante, E. S. D. d. Farias, S. I. Bonou, J. R. S. d. Sales, H. A. Almeida, R. L. S. d. Ferraz, C. F. d. Lacerda. Horticulturae, 11 (2025) 438
32. X. J. Wang, C. S. Loh, H. H. Yeoh, W. Q. Sun. J. Exp. Bot., 53, N 368 (2002) 551—558
33. R. Munns, M. Tester. Annu. Rev. Plant Biol., 59 (2008) 651—681
34. L. X. Xu, X. Xin, G. K. Yin, J. Zhou, Y. C. Zhou, X. X. Lu. Sci. Rep., 10 (2020) 13294
35. M. U. Alam, M. Fujita, K. Nahar, A. Rahman, T. I. Anee, A. A. Chowdhury Masud, A. K. M. Ruhul Amin, M. Hasanuzzaman. Plant Stress, 6 (2022) 100120
36. C. Kaya, M. Ashraf, O. Sonmez. Turkish J. Botany, 39, N 5 (2015) 786—795
37. J. Sembi, D. Ghai, J. Verma. In: Molecular Approaches in Plant Biologyand Environmental Challenges, Ed. P. Singh, Singapore, Springer Nature (2019) 449—473
38. C. He, Z. Yu, J. A. Teixeira da Silva, J. Zhang, X. Liu, X. Wang, X. Zhang, S. Zeng, K. Wu, J. Tan, G. Ma, J. Luo, J. Duan. Sci. Rep., 7 (2017) 41010
39. N. Swagata, K. Suman. Phytochemistry, 156 (2018) 176—183
40. J. W. Li, X. D. Chen, X. Y. Hu, L. Ma, S. B. Zhang. Planta, 247, N 1 (2018) 69—97
41. C. Zhang, J. Chen, W. Huang, X. Song, J. Niu. Front Genet., 12 (2021) 692702
42. X. Qin, Y. Liu, S. Mao, T. Li, H. Wu, C. Chu, Y. Wang. Euphytica, 177, N 1 (2011) 33—43
43. Y. Fan, J. Ma, Y. Liu, X. Tan, X. Li, E. Xu, L. Xu, A. Luo. Int. J. Mol. Sci., 24, N 19 (2023) 14692
44. H. Fan, T. Li, L. Guan, Z. Li, N. Guo, Y. Cai, Y. Lin. Plant Cell Tiss. Organ. Cult., 109 (2012) 307—314
45. R. K. Tewari, P. Kumar, S. Kim, E. J. Hahn, K. Y. Paek. Plant Cell Rep., 28, N 2 (2009) 267—279
46. P. Amnuaykan, S. Juntrapirom, W. Kanjanakawinkul, W. Chaiyana. Plants (Basel), 13, N 13 (2024) 1770
Review
For citations:
Chernysh M.A., Matskevich V.S., Zvonarev S.N., Bakhmetova A.F., Smolikova G.N., Medvedev S.S., Demidchik V.V. Analysis of Stress-Induced Generation of Reactive Oxygen Species in Phalaenopsis ×hybridum Blume Protocorms Using the Redox-Dependent Fluorescent Dihydroethidium Probe. Zhurnal Prikladnoii Spektroskopii. 2026;93(1):86-95. (In Russ.)
JATS XML





















