Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

QUANTITATIVE ANALYSIS OF Ca, Mg, and K IN THE ROOTS OF angelica pubescens f. biserrata BY LASER-INDUCED BREAKDOWN SPECTROSCOPY COMBINED WITH ARTIFICIAL NEURAL NETWORKS

Abstract

Laser-induced breakdown spectroscopy has been applied for the quantitative analysis of Ca, Mg, and K in the roots of Angelica pubescens Maxim. f. biserrata Shan et Yuan used in traditional Chinese medicine. Ca II 317.993 nm, Mg I 517.268 nm, and K I 769.896 nm spectral lines have been chosen to set up calibration models for the analysis using the external standard and artificial neural network methods. The linear correlation coefficients of the predicted concentrations versus the standard concentrations of six samples determined by the artificial neural network method are 0.9896, 0.9945, and 0.9911 for Ca, Mg, and K, respectively, which are better than for the external standard method. The artificial neural network method also gives better performance comparing with the external standard method for the average and maximum relative errors, average relative standard deviations, and most maximum relative standard deviations of the predicted concentrations of Ca, Mg, and K in the six samples. Finally, it is proved that the artificial neural network method gives better performance compared to the external standard method for the quantitative analysis of Ca, Mg, and K in the roots of Angelica pubescens.

About the Authors

J. . Wang
College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications
Russian Federation


M. . Shi
College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications
Russian Federation


P. . Zheng
College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications
Russian Federation


Sh. . Xue
College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications
Russian Federation


R. . Peng
Chongqing Academy of Chinese Medicine
Russian Federation


References

1. T. Fujioka, K. H. Furumi, H. Okabe, Chem. Pharm. Bull., 47, 96-100 (1999).

2. M. Senila, A. Drolc, A. Pintar, J. Anal. Sci. Technol., 5, 1-9 (2014).

3. X. D. Yuan, K. H. Ling, C. W. Keung, Phytochem. Anal., 20, 293-297 (2009).

4. S. Arpadjan, G. Çelik, S. Taşkesen, Food Chem. Toxicol., 46, 2871-2875 (2008).

5. P. C. Zheng, H. D. Liu, J. M. Wang, Anal. Methods, 6, 2163-2169 (2014).

6. S. Kashiwakura, K. Wagatsuma, Anal. Sci., 29, 1159-1164 (2013).

7. B. Chen, H. Kano, M. Kuzuya. Anal. Sci., 24, 289-291 (2008).

8. M. Y. Yao, L. Huang, J. Zheng, Opt. Laser Technol., 52, 70-74 (2013).

9. L. Huang, M. Y. Yao, J. L. Lin, J. Appl. Spectrosc., 80, 957-961 (2014).

10. P. C. Zheng, H. D. Liu, J. M. Wang, J. Anal. At. Spectrom., 30, 867-874 (2015).

11. Y. Li, Y. Lu, R. E. Zheng, Spectrosc. & Spectr. Anal., 32, 582-585 (2012).

12. M. Yao, J. Lin, M. Liu, Appl. Opt., 51, 1552-1557 (2012).

13. L. Huang, M. Yao, Y. Xu, M. Liu, Appl. Phys. B, 111, 45-51 (2013).

14. D. Zhu, J. Chen, J. Lu, Anal. Methods, 4, 819-823 (2012).

15. Y. Cai, P. C. Chu, S. K. Ho, Front. Phys., 7, 670-678 (2012).

16. Y. Wang, W. L. Liu, Y. F. Song, Chem. Phys., 447, 30-35 (2015).

17. E. Jobiliong, H. Suyanto, A. M. Marpaung, J. Appl. Spectrosc., 69, 115-123 (2015).

18. Y. Zhang, G. Xiong, S. Li, Combust. Flame, 160, 725-733 (2013).

19. Y. Yuan, S. Li, Q. Yao, Proc. Combust. Inst., 35, 2339-2346 (2015).

20. Y. Zhang, S. Li, Y. Ren, Q. Yao, Proc. Combust. Inst., 35, 3681-3688 (2015).

21. E. C. Ferreira, D. M. Milori, E. J. Ferreira, Spectrochim. Acta, B, 63, 1216-1220 (2008).

22. P. Inakollu, T. Philip, A. K. Rai, Spectrochim. Acta, B, 64, 99-104 (2009).

23. L. X. Sun, H. B. Yu, Z. B. Cong, Acta Opt. Sin., 30, 2757-2765 (2010).

24. V. Motto-Ros, A. S. Koujelev, G. R. Osinski, J. Europ. Opt. Soc. Rapid Publ., 3, 08011 (2008).

25. S. Y. Oh, F. Y. Yueh, J. P. Singh, Appl. Opt., 49, C36-C41 (2010).

26. P. C. Zheng, M. J. Shi, J. M. Wang, Plasma Sci. Technol, 17, 664-670 (2015).

27. J. B. Sirven, B. Bousquet, L. Canioni, Anal. Bioanal.Chem., 385, 256-262 (2006).

28. R. Beale, T. Jackson, Neural Computing - An Introduction, CRC Press, Florida, USA (1990).


Review

For citations:


Wang J., Shi M., Zheng P., Xue Sh., Peng R. QUANTITATIVE ANALYSIS OF Ca, Mg, and K IN THE ROOTS OF angelica pubescens f. biserrata BY LASER-INDUCED BREAKDOWN SPECTROSCOPY COMBINED WITH ARTIFICIAL NEURAL NETWORKS. Zhurnal Prikladnoii Spektroskopii. 2018;85(1):175(1)-175(7). (In Russ.)

Views: 216


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)