Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

APPROACH TO ENHANCE RAMAN SHIFT ACCURACY BASED ON A REAL-TIME COMPARATIVE MEASUREMENT METHOD

Abstract

A real-time comparative measurement method is proposed to enhance the measurement accuracy of Raman shifts. Several experimental configurations are presented and demonstrated. The error sources in Raman shifts are also analyzed. The method is tested on a Raman spectrometer by measuring a sample of monocrystalline silicon and a sample of polystyrene. Experimental results indicate that the accuracy limit of the method is 0.07 cm- 1 . The measurement uncertainty of the Raman shift of the silicon is 0.2 cm- 1 (k = 2), and the measurement uncertainty of the polystyrene is also improved. It is shown that the real-time comparative measurement method can remarkably enhance the measurement accuracy of Raman shift, and it applies to Raman spectrometers regardless of whether their exact laser wavelengths are known or not.

About the Authors

X. . Ding
National Institute of Metrology
Russian Federation


F. . Li
National Institute of Metrology
Russian Federation


J. . Li
National Institute of Metrology
Russian Federation


W. . Liu
National Institute of Metrology
Russian Federation


References

1. B. T. Bowie, D. B. Chase, P. R. Griffiths, Appl. Spectrosc., 54, No. 5, 164A-173A (2000).

2. B. T. Bowie, D. B. Chase, P. R. Griffiths, Appl. Spectrosc., 54, No. 6, 200A-207A (2000).

3. Standard Guide for Raman Shift Standards for Spectrometer Calibration, ASTM E1840-96 (2007), in: Annual Book of ASTM Standards, West Conshohocken, Pennsylvania.

4. M.R. Pollard, S. Duraipandian, R. Møller-Nilsen, L. Nielsen, Spectroscopy, 32, No. 6, 38-44 (2017).

5. A. W. Fountain III, C. K. Mann, T. J. Vickers, Appl. Spectrosc., 49, No. 7, 1048-1053 (1995).

6. W. Fountain III, T. J. Vickers, C. K. Mann, Appl. Spectrosc., 52, No. 3, 462-468 (1998).

7. T. J. Vickers, C. K. Mann, Appl. Spectrosc., 53, No. 12, 1617-1622 (1999).

8. I. Chou, J. Raman Spectrosc., 46, No. 10, 987-988 (2015).

9. Q. Wang, Z. Li, Z. Ma, L. Liang, Sensor Actuat. B-Chem., 202, No.10, 426-432 (2016).

10. T. W. Bocklitz, T. Dörfer, R. Heinke, M. Schmitt, J. Popp, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 149, 544-549 (2015).

11. D. A. Carter, J. E. Pemberton, Appl. Spectrosc., 49, No. 11, 1550-1560 (1995).

12. D. A. Carter, W. R. Thompson, C. E. Taylor, J. E. Pemberton, Appl. Spectrosc., 49, No.11, 1561-1576 (1995).

13. X. Ding, F. Li, J. Zhang, W. Liu, Proc. SPIE, 10155, 101551D-1 (2016).

14. S. B. Kim, R. M. Hammaker, W. G. Fateley, Appl. Spectrosc., 40, No. 3, 412-415 (1986).

15. W. Persson, Phys. Scr., 3, 133-155 (1971).

16. E. B. Saloman, C. J. Sansonetti, J. Phys. Chem. Ref. Data, 33, No. 4, 1113-1158 (2004).

17. Joint Committee for Guides in Metrologoy (JCGM) 100:2008 Evaluation of Measurement Data-Guide to the Expression of Uncertainty in Measurement (GUM 1995 with minor corrections).


Review

For citations:


Ding X., Li F., Li J., Liu W. APPROACH TO ENHANCE RAMAN SHIFT ACCURACY BASED ON A REAL-TIME COMPARATIVE MEASUREMENT METHOD. Zhurnal Prikladnoii Spektroskopii. 2018;85(5):796-802. (In Russ.)

Views: 245


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)