Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

DETERMINATION AND VISUALIZATION OF DIFFERENT LEVELS OF DEOXYNIVALENOL IN BULK WHEAT KERNELS BY HYPERSPECTRAL IMAGING

Abstract

A hyperspectral imaging system is proposed as a method to rapidly and non-destructively predict mycotoxin deoxynivalenol (DON) levels in FHB-infected wheat kernels. Standard normal variate transformation and multiplicative scatter correction (MSC) were used in spectral preprocessing. The successive projections algorithm (SPA) and random frog algorithm were used to select the optical wavelengths. Finally, the support vector machine (SVM) technique and partial least squares discriminant analysis were applied to establish different models for determining DON levels. Based on a comparison of the results, the MSC-SPA-SVM model, with the highest classification accuracy (100.00% for the training test and 97.92% for the testing set), gave the best performance, and a visualization map of the DON content level based on this model was created.

About the Authors

K. . Liang
College of Engineering, Nanjing Agricultural University; Jiangsu Province Engineering Laboratory of Modern Facility Agriculture Technology and Equipment
Russian Federation


Q. X. Liu
College of Engineering, Nanjing Agricultural University
Russian Federation


J. H. Xu
Jiandsu Academy of Agricultural Sciences
Russian Federation


Y. Q. Wang
College of Engineering, Nanjing Agricultural University
Russian Federation


C. S. Okinda
College of Engineering, Nanjing Agricultural University
Russian Federation


M. X. Shen
College of Engineering, Nanjing Agricultural University; Jiangsu Province Engineering Laboratory of Modern Facility Agriculture Technology and Equipment
Russian Federation


References

1. http://www.dagz.boku.ac.at/fileadmin/data/H03000/H94000/pdf/Mycotoxin_regulations/ SCF_DON_opinion.pdf Retrieved 3-17-2017.

2. S. Simsek, K. Burgess, K. L. Whitney, Y. Gu, S.Y. Qian, Food Control, 2, 287-292 (2012).

3. L. Smeesters, W. Meulebroeck, S. Raeymaekers, H. Thienpont, Food Control, 70, 48-57 (2016).

4. J. G. A. Barbedo, C. S.Tibola, J. M. C. Fernandes, Biosyst. Eng., 131, 65-76 (2015).

5. J. J. Pestka, Anim. Breed. Feed, 3, 283-298 (2008).

6. A. Abysique, C. Tardivel, J. D. Troadec, B. Félix, PLoS One, 7, e133355 (2015).

7. M. Beyer, F. Pogoda, F. K. Ronellenfitsch, L. Hoffmann, T. Udelhoven, Int. J. Food Microbiol., 3, 370-374 (2010).

8. C. Maragos, M. Busman, Y. Sugita-Konishi, Food Addit. Contam., 8, 816-825 (2006). 851-9

9. A. B. Amar, S. Oueslati, A. Ghorbel, A. Mliki, Food Control, 2, 506-510 (2012).

10. M. S. Hamada, Y. N. Yin, Z. Ma, Cereal Res. Commun., 1, 85-94 (2012).

11. B. Jaillais, P. Roumet, L. Pinson-Gadais, D. Bertrand, Food Control, 54, 250-258 (2015).

12. H. Pettersson, L. Åberg, Food Control, 4, 229-232 (2003).

13. H. Cen, R. Lu, Q. Zhu, F. Mendoza, Postharvest Biol. Technol., 111, 352-361 (2016).

14. M. A. Shahin, S. J. Symons, Comput. Electron. Agric., 1, 107-112 (2011).

15. M. C. U. Araújo, T. C. B. Saldanha, R. K. H. Galvão, T. Yoneyama, H. C. Chame, V. Visani, Chemom. Intell. Lab. Syst., 2, 65-73 (2001).

16. H. Ma, H. Y. Ji, W. S. Lee, Spectrosc. Spectr. Anal., 36, No. 7, 2344-2350 (2017).

17. W. Luo, Y. Z. Du, H. L. Zhang, Spectrosc. Spectr. Anal., 33, No. 11, 3536-3541 (2016).

18. Y. Yuan, W. Wang, X. Chu, M. J. Xi, Spectrosc. Spectr. Anal., 36, No. 1, 226-230 (2016).

19. H. D. Li, Q. S. Xu, Y. Z. Liang, Anal. Chim. Acta, 740, 20-26 (2012).

20. P. J. Green, Biometrika, 4, 711-732 (1995).

21. M. H. Hu, Q. L. Dong, B. L. Liu, U. L.Opara, L. Chen, Postharvest Biol. Technol., 106, 1-10 (2015).

22. X. Li, C. Sun, L. Luo, Y. He, Comput. Electron. Agric., 112, 28-35 (2015).

23. S. Wold, M. Sjostrom, L. Eriksson, Chemom. Intell. Lab. Syst., 58, No. 2, 109-130 (2001).

24. M. Barker, W. Rayens, J. Chemom., 17, 166-173 (2003).

25. V. N. Vapnik, A. Lerner, Autom. Rem. Contr., 6, 774-780 (2008).

26. W. Wang, Z. Xu, W. Lu, X. Zhang, Neurocomputing, 3-4, 643-663 (2003).

27. H. Lin, Q. Chen, J. Zhao, P. Zhou, J. Pharma. Biomed., 5, 803-808 (2009).

28. Q. Yang, D. W. Sun, W. W. Cheng, J. Food Eng., 192, 53-60 (2017).

29. J. H. Cheng, D. W. Sun, LWT-Food Sci. Technol., 2, 892-898 (2015).

30. G. Elmasry, D. W. Sun, P. Allen, Food Res. Int., 9, 2624-2633 (2011).


Review

For citations:


Liang K., Liu Q.X., Xu J.H., Wang Y.Q., Okinda C.S., Shen M.X. DETERMINATION AND VISUALIZATION OF DIFFERENT LEVELS OF DEOXYNIVALENOL IN BULK WHEAT KERNELS BY HYPERSPECTRAL IMAGING. Zhurnal Prikladnoii Spektroskopii. 2018;85(5):851(1)-851(9). (In Russ.)

Views: 254


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)