Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

INVESTIGATION OF THE OPTICAL PROPERTIES OF InSb THIN FILMS GROWN ON GaAs BY TEMPERATURE-DEPENDENT SPECTROSCOPIC ELLIPSOMETRY

Abstract

NSb thin films were grown on GaAs substrates by metal organic chemical vapor deposition (MOCVD) and investigated by temperature-dependent spectroscopic ellipsometry (TD-SE). The refractive index, extinction coefficient, and dielectric function of the InSb films were extracted. The variation of critical point energies (E1, E11, E2, E1') related to the excited state transitions of InSb and the second energy derivatives of the dielectric function at different temperatures showed that the InSb thin film had high electrical and optical stability at the evaluated temperatures. TD-SE analysis revealed a temperature range suitable for the use of InSb/GaAs-based devices. Beyond 250oC, InSb was heavily oxidized to form a thin In-O layer, causing a pronounced change in the optical constants. The results indicated that optimized InSb thin films grown on GaAs by MOCVD possess good optical and structural properties.

About the Authors

Liang
College of Physics Science & Technology, Guangxi University
Russian Federation


F. . Wang
College of Physics Science & Technology, Guangxi University
Russian Federation


X. . Luo
College of Physics Science & Technology, Guangxi University
Russian Federation


Q. . Li
College of Physics Science & Technology, Guangxi University
Russian Federation


T. . Lin
College of Physics Science & Technology, Guangxi University
Russian Federation


I. T. Ferguson
Missouri University of Science & Technology
Russian Federation


Q. . Yang
College of Physics Science & Technology, Guangxi University
Russian Federation


L. . Wan
College of Physics Science & Technology, Guangxi University
Russian Federation


Z. C. Feng
College of Physics Science & Technology, Guangxi University
Russian Federation


References

1. V. K. Dixit, B. V. Rodrigues, H. L. Bhat, J. Appl. Phys., 90, 1750-1753 (2001).

2. V. K. Dixit, B. V. Rodrigues, H. L. Bhat, R. Venkataraghavan, K. S. Chandrasekaran, B. M. Arora, J. Cryst. Growth, 235, 154-160 (2002).

3. T. D. Mishima, M. B.Santos, J. Vac. Sci. Technol. B, B, 1472-1474 (2004).

4. M. Shafa, H. Ji, L. Gao, P. Yu, Q. H. Ding, Z. H. Zhou, H. D. Li, X. B. Niu, J. Wu, Z. M. Wang, Mater. Lett., 169, 77-81 (2016).

5. M. Hilal, B. Rashid, S. H. Khan, A. Khan, Mater. Chem. Phys., 184, 41-48 (2016).

6. P. Ciochon´, N. Olszowska, S. Wróbel, J. Kołodziej, Appl. Surf. Sci., 400, 154-161 (2017).

7. Y. Contreras, A. J. Muscat, Appl. Surf. Sci., 370, 67-75 (2016).

8. I. D. Burlakova, K. O. Boltara, P. V. Vlasova, A. A. Lopukhina, A. I. Toropovd, K. S. Zhuravlevd, V. V. Fadeev, J. Commun. Technol. Electron., 62, 309-313 (2017).

9. A. V. Filatov, E. V. Susov, V. V. Karpov, V. A. Zhilkin, S. P. Ljubchenko, N. S. Kusnezov, A. V. Marushchenko, J. Commun. Technol. Electron., 62, 326-330 (2017).

10. V. Pusino, C. Z. Xie, A. Khalid, I. G. Thayne, D. R. S. Cumming, Microelectron. Eng., 153, 11-14 (2016).

11. T. Miyazaki, M. Kunugi, Y. Kitamura, S. Adachi, Thin Solid Films, 28, 51-56 (1996).

12. K. Li, A. T. S. Wee, J. Lin, K. K. Lee, F. Watt, K. L. Tan, Z. C. Feng, J. B. Webb, Thin Solid Films, 302, 111-115 (1997).

13. Y. Iwamura, N. Watanabe, J. Cryst. Growth, 124, 371-376 (1992).

14. Z. C. Feng, C. Beckham, P. Schumaker, Mater. Res. Soc. Symp. Proc., 450, 450 (1997).

15. M. A. Mckee, B.-S. Yoo, R. A. Stall, J. Cryst. Growth, 124, 286-291 (1992).

16. M. Razeghi, EPJAP, 23, 149-205 (2003).

17. T. J. Kim, S. Y. Hwang, J. Choi, J. S. Byun, M. S. Diware, H. G. Park, Y. D. Kim, J. Korean Phys. Soc., 61, 439-443 (2012).

18. T. J. Kim, S. Y. Hwang, J. S. Byun, M. S. Diware, J. Choi, H. G. Park, Y. D. Kim, J. Appl. Phys., 114, 103501 (2013).

19. T. J. Kim, J. S. Byun, J. Choi, H. G. Park, Y. R. Kang, J. C. Park, Y. D. Kim, J. Korean Phys. Soc., 64, 1872-1877 (2014).

20. V. R. D'Costa, K. H. Tan, B. W. Jia, S. F. Yoon, Y. C. Yeo, J. Appl. Phys., 117, 223106 (2015).

21. H. Sano, G. Mizutani, AIP Adv., 5, 117110 (2015).

22. E. B. Elkenany, Silicon, 8, 391-396 (2016).

23. T. R. Yang, Y. Cheng, J. B. Wang, Z. C. Feng, Thin Solid Films, 498, 158-162 (2006).

24. G. E. Jellison Jr, F. A. Modine, Appl. Phys. Lett., 69, 371 (1996).

25. S. Chen, Q. X. Li, I. Ferguson, T. Lin, L. Y. Wan, Z. C. Feng, L. Zhu, Z. Z. Ye, Appl. Surf. Sci., 421, 383-388 (2017).

26. D. Xie, Z. R. Qiu, Y. Liu, D. N. Talwar, L. Y. Wan, X. Zhang, T. Mei, I. T. Ferguson, Z. C. Feng, Mater. Res. Express, 4, 025903 (2017).

27. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications, John Wiley & Sons, 181-184 (2007).

28. D. E. Aspnes, A. A. Studna, Phys. Rev. B, 27, 985 (1983).

29. T. J. Kim, J. J. Yoon, S. Y. Hwang, D. E. Aspnes, Y. D. Kim, H. J. Kim, Y. C. Chang, J. D. Song, Appl. Phys. Lett., 95, 11902 (2009).


Review

For citations:


Liang , Wang F., Luo X., Li Q., Lin T., Ferguson I.T., Yang Q., Wan L., Feng Z.C. INVESTIGATION OF THE OPTICAL PROPERTIES OF InSb THIN FILMS GROWN ON GaAs BY TEMPERATURE-DEPENDENT SPECTROSCOPIC ELLIPSOMETRY. Zhurnal Prikladnoii Spektroskopii. 2019;86(2):262-269. (In Russ.)

Views: 307


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)