Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

FREE RADICAL CHARACTERISTICS AND CLASSIFICATION OF COALS AND ROCKS USING ELECTRON SPIN RESONANCE SPECTROSCOPY

Abstract

Coal-rock interface recognition is one of the key unaddressed problems in unmanned mining, so a novel method for it is proposed. Firstly, electron spin resonance (ESR) is used to directly measure 10 kinds of coals/rocks common in China. Secondly, the free radical characteristics of different particle coals/rocks such as the Lande factor g, line width ΔH, and the concentration of the free radical Ng in the X-band ESR are studied. Lastly, the statistical classifier method of support-vector machine is employed to build a classification model with the input of the parameters of the ESR absorption spectra. Based on the ESR-SVM model, the recognition rate of coals/rocks reaches 100%, the recognition rate of different coals reaches 100%, and the recognition rate of different bituminous coals reaches 88.3%. The experimental results demonstrate that the proposed method is fast, stable, and accurate for the detection of the coal-rock interface and can be a promising tool for the classification of different coals.

About the Authors

S. G. Miao
School of Information and Control Engineering, China University of Mining and Technology; School of Physics and Electronic Information, Huaibei Normal University; IOT Perception Mine Research Center, China University of Mining and Technology
Russian Federation


X. W. Liu
School of Information and Control Engineering, China University of Mining and Technology; IOT Perception Mine Research Center, China University of Mining and Technology
Russian Federation


References

1. J. P. Sun, J. She, J. Chin. Coal Soc., 38, 508-512 (2013).

2. K. Xie, W. Li, W. Zhao, Energy, 35, 4349-4355 (2010).

3. S. J. Mao, J. Chin. Coal Soc., 39, 1572-1583 (2014).

4. F. Ren, Z. Y. Liu, Z. J. Yang, G. Q. Liang, J. Taiyuan Univ. Technol., 43, 1133-1141 (2010).

5. S. L. Bessinger, M. G. Nelson, IEEE Trans. Ind. Appl., 29, 562-565 (1993).

6. J. Sun, B. Su, Int. J. Min. Sci. Technol., 23, 681-687 (2013).

7. W. Xin, E. J. Ding, K. X. Hu, D. Zhao, J. China. U. Min. Technol., 45, 34-41 (2016).

8. F. Ren, Z. J. Yang, S. B. Xiong, Chin. J. Mech. Eng., 16, 321-324 (2003).

9. F. Czechowski, A. Jezierski, Energ. Fuel, 11, 951-964 (1997).

10. A. B. W. J. Ckowski, W. Wojtowicz, B. Pilawa, Fuel, 79, 1137-1141 (2000).

11. Z. H. Li, B. Kong, A. Z. Wei, Y. L. Yang, Y. B. Zhou, L. Z. Zhang, Environ. Sci. Pollut. R, 23, 1-13 (2016).

12. S. A. Feng, X. Y. Tang, J. Coal Geol. Chin., 10, 24-26(1998)

13. P. Z. Zhang, Z. F. Wang, J. Fuel Chem. Technol., 20, 307-312 (1992).

14. Y. Qin, B. Jiang, C. Wang, D. Y. Song, J. Chin. Univ. Min. Technol., 26, 10-14 (1997).

15. N. S. Qiu, H. Li, Z. J. Jin, Y. K. Zhu, Int. J. Coal Geol., 69, 220-228 (2007).

16. W. J. He, Z. Y. Liu, Q. Y. Liu, L. Shi, X. G. Shi, J. F. Wu, X. J. Guo, Fuel Process. Technol., 156, 221-227 (2017).

17. C. J. White, C. T. Elliott, J. R. White, AM LAB, 43, 18-23 (2011).

18. J. X. Liu, X. M. Jiang, J. Shen, H. Zhang, Adv. Powder. Technol., 25, 916-925 (2014).

19. J. X. Liu, X. M. Jiang, J. Shen, H. Zhang, Powder Technol., 272, 64-74 (2015).

20. X. Wang, S. G. Miao, E. J. Ding, J. China. U. Min. Technol., 45, 739-746 (2016).

21. V. N. Vapnik, The Nature of Statistical Learning Theory, Springer Verlag, New York (1995).

22. L. Petrakis, D. W. Grandy, Anal. Chem., 50, 303-308 (1978).

23. D. J. E. Ingram. Biological and Biochemical Applications of Electron Spin Resonance, Plenum Press, New York (1969).

24. A. Berlin, M. Geidrikh, B. Davydov, B. Krentsel, Chemistry of Polyconjugated Systems, Khimiya, Moscow (1972).

25. M. Ikeya, New Applications of Electron Spin Resonance, World Scientific (1993).

26. Z. H. Li, A. Z. Wei, Y. L. Yang, J. Chin. Univ. Min. Technol., 35, 576-580 (2006).


Review

For citations:


Miao S.G., Liu X.W. FREE RADICAL CHARACTERISTICS AND CLASSIFICATION OF COALS AND ROCKS USING ELECTRON SPIN RESONANCE SPECTROSCOPY. Zhurnal Prikladnoii Spektroskopii. 2019;86(2):325(1)-325(8). (In Russ.)

Views: 255


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)