Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

A SELECTIVE SURFACE-ENHANCED RAMAN SCATTERING SENSOR FOR MERCURY(II) BASED ON A POROUS POLYMER MATERIAL AND THE TARGET-MEDIATED DISPLACEMENT OF A T-RICH STRAND

Abstract

A sensitive and selective surface-enhanced Raman scattering (SERS) sensor for mercury(II) was fabricated based on the target-mediated displacement of a T-rich oligonucleotide strand. A DNA/aptamer duplex was prepared by the hybridization between a tetramethylrhodamine(TMR)-labeled thymine(T)-rich Hg2+ -specific aptamer (denoted as TMR-aptamer) and a thiolated adenine-rich capturing DNA. The duplex can be immobilized onto the SERS substrate of the Ag-moiety modified glycidyl methacrylate-ethylene dimethacrylate (denoted as Ag-GMA-EDMA) via self-assembly by the thiol anchor, in which the TMR-aptamer exists in a double-stranded chain. In this case, the label of the TMR moiety approaches the substrate surface and produces a strong SERS signal. Upon the addition of the target, a pair of TMR-aptamers could cooperatively coordinate with Hg2+ to form a stable duplex-like structure mediated by the T-Hg2+ -T complex between two adjacent strands, which triggers the release of the TMR-aptamer from the SERS substrate surface, thus drawing the TMR tags away from the substrate with a significant decrease in the SERS signal. This optical sensor shows a sensitive response to Hg2+ in a concentration from 5 nM to 2.0 mM with a detection limit of 2.5 nM. The prepared sensor is negligibly responsive to other metal ions, can be easily regenerated and shows good performance in real sample analysis.

About the Authors

Y. . Kang
School of Chemistry and Molecular Engineering and Research Center of Analysis and Test, East China University of Science and Technology
Russian Federation


L. . Zhang
School of Chemistry and Molecular Engineering and Research Center of Analysis and Test, East China University of Science and Technology
Russian Federation


H. . Zhang
School of Chemistry and Molecular Engineering and Research Center of Analysis and Test, East China University of Science and Technology
Russian Federation


T. . Wu
School of Chemistry and Molecular Engineering and Research Center of Analysis and Test, East China University of Science and Technology
Russian Federation


Y. . Du
School of Chemistry and Molecular Engineering and Research Center of Analysis and Test, East China University of Science and Technology
Russian Federation


References

1. T. W. Clarkson, L. Magos, G. J. Myers, N. Engl. J. Med., 349, 1731-1737 (2003).

2. L. Magos, A. W. Brown, S. Sparrow, E. Bailey, R. T. Snowden, W. R. Skipp, Arch. Toxicol., 57, 260-267 (1985).

3. H. W. Gao. J. Appl. Spectrosc., 63, 807-811 (1996).

4. Y. Z. Wang, H. Yang, M. Pschenitza, R. Niessner, Y. Li, D. Knopp, A. P. Deng, Anal. Bioanal. Chem., 403, 2519-2528 (2012).

5. V. N. Mehta, S. K. Kailasa, RSC. Adv., 5, 4245-4255 (2015).

6. Z. Guo, G. Chen, G. Zeng, Z. Li, A. Chen, M. Yan, L. Liu, D. Huang, RSC. Adv.,4, 59275-59283 (2014).

7. W. Ma, M. Sun, L. Xu, L. Wang, H. Kuang, C. Xu, Chem. Commun., 49, 4989-4991 (2013).

8. L. Zhang, H. Chang, A. Hirata, H. Wu, Q. K. Xue, M. Chen, ACS Nano, 7, 4595-4600 (2013).

9. T. Kang, S. M. Yoo, I. Yoon, S. Lee, J. Choo, S. Y. Lee, B. Kim, Chem. Eur J., 17, 2211-2214 (2011).

10. Y. Zhu, L. Xu, W. Ma, Z. Xu, H. Kuang, L. Wang, Chem. Commun., 48, 11889-11891 (2012).

11. H. Huang, S. Chen, F. Liu, Q. Zhao, B. Liao, S. Yi, Y. Zeng, Anal. Chem., 85, 2312-2319 (2013)

12. M. Rex, F. E. Hernandez, A. D. Campiglia, Anal. Chem., 78, 445-451 (2006).

13. S. Chen, D. Liu, Z. Wang, D. Cui, X. Chen, Nanoscale, 5, 6731-6735 (2013).

14. P. Dey, I. Blakey, K.J. Thurecht, P.M. Fredericks, Langmuir, 29, 525-533 (2013).

15. P. Dey, I. Blakey, K. J. Thurecht, P. M. Fredericks, Langmuir, 30, 2249-2258 (2014).

16. D. Bhandari, S. M. Wells, S. D. Retterer, M. J. Sepaniak, Anal. Chem., 81, 8061-8067 (2009).

17. Q. Li, Y. Du, H. Tang, X. Wang, G. Chen, J. Iqbal, W. Wang, W. Zhang, J. Raman. Spectrosc., 43, 1392-1396 (2012).

18. Q. Li, Y. Du, X. Wang, P. Cao, T. Sui, Y. Xu, J. Geng, J. Raman. Spectrosc., 44, 1004-1009 (2013).

19. X. Wang, Y. Du, Q. Li, T. Wu, H. Hu, Y. Xu, H. Zhang, Y. Pan, J. Raman. Spectrosc., 45, 47-53 (2014).

20. Y. Miyake, H. Togashi, M. Tashiro, H. Yamaguchi, S. Oda, M. Kudo, Y. Tanaka, Y. Kondo, R. Sawa, T. Fujimoto, T. Machinami, J. Am. Chem. Soc., 128, 2172-2173 (2006).

21. K. Tanaka, Y. Yamada, M. Shionoya, J. Am. Chem. Soc., 124, 8802-8803 (2002).

22. E. Meggers, P. L. Holland, W. B. Tolman, F. E. Romesberg, P. G. Schultz, J. Am. Chem. Soc., 122, 10714-10715 (2000).

23. G. H. Clever, C. Kaul, T. Carell, Angew. Chem. Int. Ed., 46, 6226-6236 (2007).

24. A. Ono, H. Torigoe, Y. Tanaka, I. Okamoto, Chem. Soc. Rev., 40, 5855-5866 (2011).

25. Y. Tanaka, S. Oda, H. Yamaguchi, Y. Kondo, C. Kojima, A. Ono, J. Am. Chem. Soc., 129, 244-245 (2007).

26. J. Anichina, Z. Dobrusin, D. K. Bohme, J. Phys. Chem. B., 114, 15106-15112 (2010).

27. J. H. Lina, W. L. Tseng, Analyst, 139, 1436-1441 (2014).

28. H. Mei, T. Bing, C. Qi, N. Zhang, X. Liu, T. Chang, J. Yan, D. Shangguan, Chem. Commun., 49, 164-166 (2013).

29. Y. Zhang, L. Gao, L. Wen, L. Heng, Y. Song, Phys. Chem. Chem. Phys., 15, 11943-11949 (2013).

30. S. J. Liu, H. G. Nie, J. H. Jiang, G. L. Shen, R. Q. Yu, Anal. Chem., 81, 5724-5730 (2009).

31. D. Han, S.Y. Lim, B.J. Kim, T. D. Chung, Chem. Commun., 46, 5587-5589 (2010).

32. E. Chung, R. Gao, J. Ko, N. Choi, D. W. Lim, E. K. Lee, S. I. Chang, J. Choo, Lab Chip, 13, 260-266 (2013).

33. P. C. Lee, D. Meise, J. Phys. Chem., 86, 3391-3395 (1982).

34. F. Svec, J. M. J. Frechet, Anal. Chem., 64, 820-822 (1992).

35. C. Yang, Y. Wei, Q. Zhang, H. Hu, Y. Zhang, Talanta, 66, 472-478 (2005).

36. D. Li, A. Wieckowska, I. Willner, Angew. Chem. Int. Ed., 47, 3927-3931 (2008).

37. R. A. Wolkow, M. Moskovits, J. Chem. Phys., 87, 5858-5869 (1987).

38. A. Campion, P. Kambhampati, Chem. Soc. Rev., 27, 241-250 (1998).


Review

For citations:


Kang Y., Zhang L., Zhang H., Wu T., Du Y. A SELECTIVE SURFACE-ENHANCED RAMAN SCATTERING SENSOR FOR MERCURY(II) BASED ON A POROUS POLYMER MATERIAL AND THE TARGET-MEDIATED DISPLACEMENT OF A T-RICH STRAND. Zhurnal Prikladnoii Spektroskopii. 2017;84(2):201-207. (In Russ.)

Views: 258


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)