Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

THE STRUCTURE OF THE PHOTOLUMINESCENCE SPECTRA OF OXYGEN DOPED GRAPHITIC CARBON NITRIDE

Abstract

Evolution of photoluminescence spectra of graphitic-like carbon nitride synthesized by pyrolysis of melamine in closed oxygen containing air environment was studied in the temperature range of 10-300 K. It was shown that the oxygen concentration in the resulting material is 4-5 at. % and increases with the temperature and decreases with increasing of the synthesis process duration. Measurements at low temperatures up to 10 K made it possible to resolve several bands on the photoluminescence spectra of graphite-like carbon nitride associated with radiative recombination processes. It was found that an increase in the synthesis temperature from 500 to 600 °С as well as an increase in its duration from 30 to 240 min at a given temperature lead to a shift of photoluminescence spectrum maximum from 2.74 eV to the lower energy region of 2.71-2.67 eV. That shift is associated with the increasing role in light emission of the molecular system formed by π-bonds of carbon and nitrogen atoms with sp2-hybridization characterized by a smaller band gap. Transitions associated with recombination through oxygen-induced levels in the band gap of the semiconductor contribute to the appearance of a “tail” on the photoluminescence spectra in the low-energy region (2.4-2.33 eV). An increase in the temperature of carbon nitride synthesis to 600 °C leads to a change in the structure of energy zones and an increase in the energy of radiative transitions due to an increase in the oxygen doping level and thermal stratification.

About the Authors

E. B. Chubenko
Belarusian State University of Informatics and Radioelectronics
Belarus
Minsk, 220013


A. V. Baglov
Belarusian State University of Informatics and Radioelectronics
Belarus
Minsk, 220013


M. S. Leonenya
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus
Minsk, 220072


G. P. Yablonskiy
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus
Minsk, 220072


V. E. Borisenko
Belarusian State University of Informatics and Radioelectronics; National Research Nuclear University MEPhI
Belarus
Minsk, 220013, Belarus; Moscow, 115409, Russia


References

1. Y. Zheng, L. Lin, B. Wang, X. Wang. Angew. Chem., Int. Ed., 54 (2015) 12868—12884

2. E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, A. D. Norman. New J. Chem., 26 (2002) 508—512

3. A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan. Nano-Micro Lett., 9 (2017) 47

4. B. Molina, L. E. Sansores. Mod. Phys. Lett. B, 13 (1999) 193—201

5. Y. Zhao, J. Zhang, L. Qu. Chem. Nano. Mat., 1 (2015) 298—318

6. A. Zambon, J.-M. Mouesca, C. Gheorghiu, P.A. Bayle, J. Pécaut, M. Claeys-Bruno, S. Gambarelli, L. Dubois. Chem. Sci., 7 (2016) 945—950

7. A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J. M. Carlsson. J. Mater. Chem., 18 (2008) 4893—4908

8. J. Wen, J. Xie, X. Chen, X. Li. Appl. Surf. Sci., 391 (2017) 72—123

9. J. Hernández-Torres, A. Gutierrez-Franco, P. G. González, L. García-González, T. Hernandez-Quiroz, L. Zamora-Peredo, V. H. Méndez-García, A. Cisneros-de la Rosa. J. Spectrosc., 2016 (2016) 5810592

10. J. Zhu, P. Xiao, H. Li, S. A. C. Carabineiro. ACS Appl. Mater. Interf., 6 (2014) 16449—16465

11. W.-J. Ong, L.-L. Tan, Y. H. Ng, S.-T. Yong, S.-P. Chai. Chem. Rev., 116 (2016) 7159—7329

12. A. Sudhaik, P. Raizada, P. Shandilya, D.-Y. Jeong, J.-H. Lim, P. Singh. J. Ind. Eng. Chem., 67 (2018) 28—51

13. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti. Nat. Mater., 8 (2009) 76—80

14. B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, W. Schnick. J. Am. Chem. Soc., 125 (2003) 10288—10300

15. M.J. Bojdys, J.-O. Müller, M. Antonietti, A. Thomas. Chem. Eur. J., 14 (2008) 8177—8182

16. W. Wu, J. Zhang, W. Fan, Z. Li, L. Wang, X. Li, Y. Wang, R. Wang, J. Zheng, M. Wu, H. Zeng. ACS Catal., 6 (2016) 3365—3371

17. Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, Q. Zhang, J. Qiu. Sci. Rep., 3 (2013) 1943

18. S. Yin, J. Han, T. Zhoua, R. Xu. Catal. Sci. Technol., 5 (2015) 5048—5061

19. B. Choudhury, K. K. Paul, D. Sanyal, A. Hazarika, P. K. Giri. J. Phys. Chem. C, 122 (2018) 9209—9219

20. D. Das, D. Banerjee, D. Pahari, U. K. Ghorai, S. Sarkar, N. S. Das, K. K. Chattopadhyay. J. Lumin., 185 (2017) 155—165

21. N. M. Denisov, E. B. Chubenko, V. P. Bondarenko, V. E. Borisenko. Tech. Phys. Lett., 45 (2019) 108—110

22. E. B. Chubenko, A. V. Baglov, E. S. Lisimova, V. E. Borisenko. Int. J. Nanosci., 18 (2019) 1940042

23. G. Zhang, J. Zhang, M. Zhang, X. Wang. J. Mater. Chem., 22 (2012) 8083—8091

24. Z. Gan, Y. Shen, J. Chen, Q. Gui, Q. Zhang, S. Nie. Nano Res., 9 (2016) 1801—1812

25. D. Das, S. L. Shinde, K. K. Nanda. ACS Appl. Mater. Interf., 83 (2016) 2181—2186

26. Y. P. Varshni. Physica, 34 (1967) 149—154

27. J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, J. Yu. Small, 13 (2017) 1603938

28. Y. Jiang, Z. Sun, C. Tang, Y. Zhou, L. Zeng, L. Huang. Appl. Catal. B, 240 (2019) 30—38

29. F. Dong, Y. Li, Z. Wang, W. K. Ho. Appl. Surf. Sci., 358 (2015) 393—403

30. J. Bian, C. Huang, R.-Q. Zhang. Chem. Sus. Chem., 9 (2016) 1—14


Review

For citations:


Chubenko E.B., Baglov A.V., Leonenya M.S., Yablonskiy G.P., Borisenko V.E. THE STRUCTURE OF THE PHOTOLUMINESCENCE SPECTRA OF OXYGEN DOPED GRAPHITIC CARBON NITRIDE. Zhurnal Prikladnoii Spektroskopii. 2020;87(1):14-20. (In Russ.)

Views: 403


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)