THE STRUCTURE OF THE PHOTOLUMINESCENCE SPECTRA OF OXYGEN DOPED GRAPHITIC CARBON NITRIDE
Abstract
Evolution of photoluminescence spectra of graphitic-like carbon nitride synthesized by pyrolysis of melamine in closed oxygen containing air environment was studied in the temperature range of 10-300 K. It was shown that the oxygen concentration in the resulting material is 4-5 at. % and increases with the temperature and decreases with increasing of the synthesis process duration. Measurements at low temperatures up to 10 K made it possible to resolve several bands on the photoluminescence spectra of graphite-like carbon nitride associated with radiative recombination processes. It was found that an increase in the synthesis temperature from 500 to 600 °С as well as an increase in its duration from 30 to 240 min at a given temperature lead to a shift of photoluminescence spectrum maximum from 2.74 eV to the lower energy region of 2.71-2.67 eV. That shift is associated with the increasing role in light emission of the molecular system formed by π-bonds of carbon and nitrogen atoms with sp2-hybridization characterized by a smaller band gap. Transitions associated with recombination through oxygen-induced levels in the band gap of the semiconductor contribute to the appearance of a “tail” on the photoluminescence spectra in the low-energy region (2.4-2.33 eV). An increase in the temperature of carbon nitride synthesis to 600 °C leads to a change in the structure of energy zones and an increase in the energy of radiative transitions due to an increase in the oxygen doping level and thermal stratification.
About the Authors
E. B. ChubenkoBelarus
Minsk, 220013
A. V. Baglov
Belarus
Minsk, 220013
M. S. Leonenya
Belarus
Minsk, 220072
G. P. Yablonskiy
Belarus
Minsk, 220072
V. E. Borisenko
Belarus
Minsk, 220013, Belarus; Moscow, 115409, Russia
References
1. Y. Zheng, L. Lin, B. Wang, X. Wang. Angew. Chem., Int. Ed., 54 (2015) 12868—12884
2. E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, A. D. Norman. New J. Chem., 26 (2002) 508—512
3. A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan. Nano-Micro Lett., 9 (2017) 47
4. B. Molina, L. E. Sansores. Mod. Phys. Lett. B, 13 (1999) 193—201
5. Y. Zhao, J. Zhang, L. Qu. Chem. Nano. Mat., 1 (2015) 298—318
6. A. Zambon, J.-M. Mouesca, C. Gheorghiu, P.A. Bayle, J. Pécaut, M. Claeys-Bruno, S. Gambarelli, L. Dubois. Chem. Sci., 7 (2016) 945—950
7. A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J. M. Carlsson. J. Mater. Chem., 18 (2008) 4893—4908
8. J. Wen, J. Xie, X. Chen, X. Li. Appl. Surf. Sci., 391 (2017) 72—123
9. J. Hernández-Torres, A. Gutierrez-Franco, P. G. González, L. García-González, T. Hernandez-Quiroz, L. Zamora-Peredo, V. H. Méndez-García, A. Cisneros-de la Rosa. J. Spectrosc., 2016 (2016) 5810592
10. J. Zhu, P. Xiao, H. Li, S. A. C. Carabineiro. ACS Appl. Mater. Interf., 6 (2014) 16449—16465
11. W.-J. Ong, L.-L. Tan, Y. H. Ng, S.-T. Yong, S.-P. Chai. Chem. Rev., 116 (2016) 7159—7329
12. A. Sudhaik, P. Raizada, P. Shandilya, D.-Y. Jeong, J.-H. Lim, P. Singh. J. Ind. Eng. Chem., 67 (2018) 28—51
13. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti. Nat. Mater., 8 (2009) 76—80
14. B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, W. Schnick. J. Am. Chem. Soc., 125 (2003) 10288—10300
15. M.J. Bojdys, J.-O. Müller, M. Antonietti, A. Thomas. Chem. Eur. J., 14 (2008) 8177—8182
16. W. Wu, J. Zhang, W. Fan, Z. Li, L. Wang, X. Li, Y. Wang, R. Wang, J. Zheng, M. Wu, H. Zeng. ACS Catal., 6 (2016) 3365—3371
17. Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, Q. Zhang, J. Qiu. Sci. Rep., 3 (2013) 1943
18. S. Yin, J. Han, T. Zhoua, R. Xu. Catal. Sci. Technol., 5 (2015) 5048—5061
19. B. Choudhury, K. K. Paul, D. Sanyal, A. Hazarika, P. K. Giri. J. Phys. Chem. C, 122 (2018) 9209—9219
20. D. Das, D. Banerjee, D. Pahari, U. K. Ghorai, S. Sarkar, N. S. Das, K. K. Chattopadhyay. J. Lumin., 185 (2017) 155—165
21. N. M. Denisov, E. B. Chubenko, V. P. Bondarenko, V. E. Borisenko. Tech. Phys. Lett., 45 (2019) 108—110
22. E. B. Chubenko, A. V. Baglov, E. S. Lisimova, V. E. Borisenko. Int. J. Nanosci., 18 (2019) 1940042
23. G. Zhang, J. Zhang, M. Zhang, X. Wang. J. Mater. Chem., 22 (2012) 8083—8091
24. Z. Gan, Y. Shen, J. Chen, Q. Gui, Q. Zhang, S. Nie. Nano Res., 9 (2016) 1801—1812
25. D. Das, S. L. Shinde, K. K. Nanda. ACS Appl. Mater. Interf., 83 (2016) 2181—2186
26. Y. P. Varshni. Physica, 34 (1967) 149—154
27. J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, J. Yu. Small, 13 (2017) 1603938
28. Y. Jiang, Z. Sun, C. Tang, Y. Zhou, L. Zeng, L. Huang. Appl. Catal. B, 240 (2019) 30—38
29. F. Dong, Y. Li, Z. Wang, W. K. Ho. Appl. Surf. Sci., 358 (2015) 393—403
30. J. Bian, C. Huang, R.-Q. Zhang. Chem. Sus. Chem., 9 (2016) 1—14
Review
For citations:
Chubenko E.B., Baglov A.V., Leonenya M.S., Yablonskiy G.P., Borisenko V.E. THE STRUCTURE OF THE PHOTOLUMINESCENCE SPECTRA OF OXYGEN DOPED GRAPHITIC CARBON NITRIDE. Zhurnal Prikladnoii Spektroskopii. 2020;87(1):14-20. (In Russ.)