Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

DYNAMIC RAMAN FUSION SPECTROSCOPY FOR RAPID QUALITY DISCRIMINANT ANALYSIS OF RED WINE

Abstract

The dynamic Raman spectra of a brand of red wine (aa) as the main research object were collected over a range of laser integration times (1–5 s) to observe the changing trends of molecules in the wine under experimental conditions. The three-dimensional Raman characteristic spectrum of this wine was then constructed further by two-dimensional correlation fusion analysis. The fluctuations of the three-dimensional Raman spectra were also evaluated using a similarity algorithm. The correlation coefficients were 0.977 ± 0.011 and 0.990 ± 0.006 based on synchronous and asynchronous two-dimensional correlation Raman spectroscopy, respectively. These results suggested that the samples of wine aa were highly self-similar and could be effectively distinguished from two different brands of red wine (bb and cc) based on their different spectral responses. Therefore, this method has the potential to supplement existing methods for the classification analysis of red wine.

About the Authors

Zheng-Yong Zhang
Nanjing University of Finance and Economics
China

School of Management Science and Engineering

Nanjing Jiangsu 210023


Jun Liu
Nanjing University of Finance and Economics
China

School of Management Science and Engineering

Nanjing Jiangsu 210023


References

1. I. L. Francis, P. O. Williamson, Aust. J. Grape Wine Res., 21 , 554–567 (2015).

2. H. X. Yu, L. Q. Sun, J. Qi, Chin. J. Nat. Med., 12 , 517–524 (2014).

3. D. W. Jeffery, M. D. Mercurio, M. J. Herderich, Y. Hayasaka, P. A. Smith, J. Agric. Food Chem., 56 , 2571–2580 (2008).

4. C. A. T. Dos Santos, R. N. M. J. Páscoa, J. A. Lopes, Trends Anal. Chem., 88 , 100–118 (2017).

5. M. Sha, Z. Y. Zhang, D. D. Gui, Y. B. Wang, L. L. Fu, H. Y. Wang, Food Anal. Methods, 10 , 3415–3423 (2017).

6. E. Borràs, J. Ferré, R. Boqué, M. Mestres, L. Aceña, O. Busto, Anal. Chim. Acta, 891 , 1–14 (2015).

7. I. Noda, J. Mol. Struct., 1124 , 3–7 (2016).

8. I. Noda, J. Mol. Struct., 1124 , 197–206 (2016).

9. I. Noda, J. Mol. Struct., 1124 , 42–52 (2016).

10. I. Noda, J. Mol. Struct., 1124 , 29–41 (2016).

11. I. Noda, Y. Ozaki, Two-Dimensional Correlation Spectroscopy – Applications in Vibrational and Optical Spectroscopy, John Wiley & Sons, Chichester, 1–195 (2005).

12. I. Noda, J. Mol. Struct., 1124 , 53–60 (2016).

13. D. A. Magdas, F. Guyon, I. Feher, S. C. Pinzaru, Food Control, 85 , 385–391 (2018).

14. G. X. Wang, H. Y. Wang, H. Wang, Z. Y. Zhang, J. Liu, Spectrosc. Spectral Anal., 36 , 729–735 (2016).

15. L. Mandrile, G. Zeppa, A. M. Giovannozzi, A. M. Rossi, Food Chem., 211 , 260–267 (2016).

16. C. Martin, J. Bruneel, F. Guyon, B. Médina, M. Jourdes, P. Teissedre, F. Guillaume, Food Chem., 181 , 235–240 (2015).

17. Q. Wang, Z. Li, Z. Ma, L. Liang, Sens. Actuators, B, 202 , 426–432 (2014).

18. Z. Y. Zhang, M. Sha, H. Y. Wang, J. Raman Spectrosc., 48 , 1111–1115 (2017).

19. J. Chen, Q. Zhou, I. Noda, S. Sun, Appl. Spectrosc., 63 , 920–925 (2009).


Review

For citations:


Zhang Zh., Liu J. DYNAMIC RAMAN FUSION SPECTROSCOPY FOR RAPID QUALITY DISCRIMINANT ANALYSIS OF RED WINE. Zhurnal Prikladnoii Spektroskopii. 2020;87(1):116-121.

Views: 330


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)