OPTICAL AND DIELECTRIC CHARACTERIZATION OF PVA CAPPED ZnSe NANORODS
Abstract
PVA passivated ZnSe nanorods have been synthesized using the solvothermal method. XRD analysis of the synthesized nanorods validates the cubic zinc blende structure with average particle size of 14 nm, and SEM analysis confirms the formation of rods having a wide range of lengths. A twin nanorod along with a typical nanostructure of rods has been observed in SEM micrographs. The optical characterization of the synthesized nanorods has been made using UV-Vis and photoluminescence spectroscopy. An energy gap of 3.89 eV has been observed, which is blue shifted from the bulk ZnSe. The dielectric study of ZnSe nanorods has been also made and reported.
About the Authors
K. S. OjhaIndia
Department of Physics
A. K. Shrivastav
India
Department of Physics
References
1. L. S. Li, N. Pradhan, Y. Wang, X. Peng, Nano Lett., 4, No. 11, 2261–2264 (2004).
2. M. A. Rafea, J. Mater. Sci.: Mater. Electron., 18, 415–420 (2007).
3. A. C. Deshpande, S. B. Singh, M. K. Abyaneh, R. Pasricha, S. K. Kulkarni, Mater. Lett., 62, 3803–3805 (2008).
4. S. Jana, I. C. Baek, M. A. Lim, S. I. Seok, J. Colloid Interface Sci., 322, 473–477 (2008).
5. J. Archana, M. Navaneethan, S. Ponnusamy, Y. Hayakawa, C. Muthamizhchelvan, Appl. Surf. Sci., 257, 7699–7703 (2011).
6. Ch. Rajesh, C. Phadnis, K. G. Sonawane, S. Mahamuni, J. Exp. Nanosci., 10, No. 14, 1082–1092 (2015).
7. N. K. Nasab, A. R. Dehnad, H. Salimizand, D. Taherzadeh, D. Prakash, K. D. Verma, M. Darroudi, Ceram. Int., 42, 12115–12118 (2016).
8. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Leiber, Nature, 415, 617–620 (2002).
9. C. Thelander, T. Martensson, M. T. Bjork, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, L. Samuelson, Appl. Phys. Lett., 83, 2052–2054 (2003).
10. C. Yang, Z. H. Zhong, C. M. Lieber, Science, 310, 1304–1307 (2005).
11. A. B. Panda, S. Acharya, S. Efrima, Adv. Mater., 17, No. 20, 2471–2474 (2005).
12. S. L. Xiong, J. Shen, Q. Xie, Y. Q. Gao, Q. Tang, Y. T. Qian, Adv. Funct. Mater., 15, No. 11, 1787–1792 (2005).
13. D. D. Fanfair, B. A. Korgel, Chem. Mater., 19, No. 20, 4943–4948 (2007).
14. A. Dong, R. Tang, W. E. Buhro, J. Am. Chem. Soc., 129, No. 40, 12254–12262 (2007).
15. J. W. L. Yim, D. Chen, G. F. Brown, J. Wu, Nano Res., 2, 931–937 (2009).
16. D. Han, C. Song, X. Li, J. Nanomater., 290763 (1–4) (2010); doi:10.1155/2010/290763.
17. L. Zhang, H. Yang, App. Phys. A: Mater. Sci. Proc., 98, No. 4, 801–810 (2010).
18. N. Petchsang, L. Shapoval, F. Vietmeyer, Y. Yu, J. H. Hodak, I.-M. Tang, T. H. Kosel, M. Kuno, Nanoscale, 3, No. 8, 3145–3151 (2011).
19. T. Yao, Q. Zhao, Z. Qiao, F. Peng, H. Wang, H. Yu, C. Chi, J. Yang, Chem. A Eur. J. 17, No. 31, 8663–8670 (2011).
20. J. Wang, H. Feng, W. Fan, K. Chen, Q. Yang, Adv. Mater. Phys. Chem., 3, 289–294 (2013).
21. W. E. Mahmoud, H. M. El-Mallah, J. Phys. D: Appl. Phys., 42, 1–5 (2009).
22. M. Sharma, S. K. Tripathi, J. Phys. Chem. Solids, 73, 1075–1081 (2012).
23. A. J. Ahamed, K. Ramar, P. V. Kumar, J. Nanosci. Nanotechnol., 2, No. 3, 148–150 (2016).
24. H. Y. Chang, C. T. Lin, S. J. Chiu, Desalination, 233, 137–146 (2008).
25. C. G. Koops, Phys. Rev., 83, 121–124 (1951).
26. G. Yellaiah, T. Shekharam, K. Hadasa, M. Nagabhushanam, J. Alloys. Compd., 609, 192–200 (2014).
27. H. Demiryont, J. Appl. Phys., 49, 2898–2904 (1978).
Review
For citations:
Ojha K.S., Shrivastav A.K. OPTICAL AND DIELECTRIC CHARACTERIZATION OF PVA CAPPED ZnSe NANORODS. Zhurnal Prikladnoii Spektroskopii. 2020;87(1):148-153.