Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

DIAGNOSIS OF CITRUS GREENING USING RAMAN SPECTROSCOPY-BASED PATTERN RECOGNITION

Abstract

This study verified the applicability of Raman spectroscopy for the detection and classification of disease in citrus leaves. The Raman spectra of citrus leaves were collected using a SENTERRA confocal microprobe Raman spectrometer and divided into five types, Huanglongbing (HLB), moderate HLB, serious HLB, nutrient deficiency, and normal. The backgrounds of the spectra were deducted by different methods, and partial least squares discrimination analysis (PLS-DA) and extreme learning machine (ELM) were used to build the mathematical model. At the same time, the data dimension was reduced using principal component analysis (PCA) and successive projection algorithm (SPA) in order to optimize and improve the classification accuracy of the model. The experiments showed that the predictive ability of the PLS-DA model with 1850 input variables by 2 times polynomial fitting deducted backgrounds was better, the recognition correct rate being 100%. The results show that Raman spectroscopy has potential for rapid diagnosis of citrus HLB.

About the Authors

Y. Liu
College of Mechanical and Vehicle Engineering, East China Jiaotong University
China
Jiangxi Province


H. Xiao
College of Mechanical and Vehicle Engineering, East China Jiaotong University
China
Jiangxi Province


Y. Hao
College of Mechanical and Vehicle Engineering, East China Jiaotong University
China
Jiangxi Province


L. Ye
College of Mechanical and Vehicle Engineering, East China Jiaotong University
China
Jiangxi Province


X. Jiang
College of Mechanical and Vehicle Engineering, East China Jiaotong University
China
Jiangxi Province


H. Wang
College of Mechanical and Vehicle Engineering, East China Jiaotong University
China
Jiangxi Province


X. Sun
College of Mechanical and Vehicle Engineering, East China Jiaotong University
China
Jiangxi Province


References

1. S. Saharan, J. M. Maja, S. Buchanon, R. Ehsani, Sensors, 13, No. 2, 2117–2130 (2013).

2. X. L. Deng, Y. D. Gao, J. C. Chen, X. L. Pu, W. W. Kong, H. P. Li, J. Integr. Agric., 11, No. 3, 424–429 (2012).

3. J. M. Bové, Phytoparasitica, 42, No. 5, 579–583 (2014).

4. A. Mitra, D. Karimi, R. Ehsani, L. G. Albrigo, Biosystem. Eng., 110, No. 3, 302–309 (2011).

5. S. Saharan, R. Ehsani, Crop Protect., 30, No. 11, 1508–1513 (2011).

6. S. A. Hawkins, B. Park, G. H. Poole, T. Gottwald, W. R. Windham, K. C. Lawrence, Appl. Spectrosc., 64, No. 1, 100–103 (2010).

7. S. Saharan, R. Ehsani, E. D. Etxeberria, Talanta, 83, No. 2, 574–581 (2010).

8. X. H. Li, W. S. Lee, M. Z. Li, R. Ehsani, A. R. Mishra, C. H. Yang, R. L. Mangan, Comput. Electron. Agric., 83, 32–46 (2012).

9. S. Saharan, R. Ehsani, Agric. Eng. Int.: CIGR J., 15, No. 3, 75–79 (2013).

10. W. R. Windham, G. H. Poole, B. Park, G. Heitschmidt, S. A. Hawkins, J. P. Albano, T. R. Gottwald, K. C. Lawrence, Trans. ASABE, 54, 2253–2258 (2011).

11. X. L. Deng, C. Kong, W. B. Wu, H. L. Mei, Z. Li, T. S. Hong, Acta Photon. Silica, 43, No. 4, 16–22 (2014).

12. H. Ma, H. Y. Ji, W. S. Lee, Spectrosc. Spectr. Anal., 36, No. 7, 2344–2350 (2016).

13. Y. J. Xu, R. H. Luo, M. T. Guo, J. F. Wu, M. Y. Li, Laser J., 28, No. 2, 13–14 (2007).

14. N. Wei, X. Q. Feng, X. F. Zhang, X. H. Qi, M. Q. Zou, M. T. Wang, Spectrosc. Spectr. Anal., 33, No. 3, 694–698 (2013).

15. F. Tan, Q. L. Cai, X. C. Sun, Z. X. Ma, Z. L. Hou, Transact. Chin. Soc. Agric. Eng., 31, No. 4, 191–196 (2015).

16. R. Baranski, M. Baranska, H. Schulz, Planta, 222, No. 3, 448–457 (2005).

17. A. Parrish, W. S. Lee, E. D. Etxeberria, A. Banerjee, Biosystem. Eng., 130, 13–22 (2015).

18. F. G. Ruiz, S. Sankaran, J. M. Maja, W. S. Lee, J. Rasmussen, R. Ehsani, Comput. Electron. Agric., 91, 106–115 (2013).

19. J. Gonzalezmora, G. Vallespi, C. S. Dima, 10th ICPA Proc. Mora (2010).

20. X. Deng, G. Zhou, H. Li, J. Chen, E. L. Civerolo, Plant Dis., 91, No. 8, 1051–1054 (2007).

21. A. Hocquellet, P. Toorawa, J. M. Bove´, M. Garnier, Mol. Cell. Probes, 13, No. 5, 373–379 (1999).

22. T. Li, C. Ke, Acta Phytophylac. Silica, 1, 31–35 (2002).

23. X. H. Li, M. Z. Li, W. S. Lee, R. Ehsani, A. R. Mishra, Spectrosc. Spectr. Anal., 34, No. 6, 1553–1559 (2014).

24. Y. W. Yuan, Z. Z. Jiang, D. S. Wang, Zhejiang Agric. Sci., 1, 121–123 (2010).

25. W. B. Zheng, X. P. Fu, Y. B. Ying, Chemom. Intell. Lab. Syst., 139, 42–47 (2014).

26. Z. J. Qin, Z. H. Tao, J. X. Liu, G. W. Wang, Spectrosc. Spectr. Anal., 33, No. 2, 383–386 (2013).

27. X. Su, S.Y. Fang, D. S. Zhang, Y. He, J. Biomed. Opt., 20, No. 12, 1117–1124 (2015).

28. L. Y. Gong, X. J. Meng, N. Q. Liu, J. F. Bi, Trans. Chin. Soc. Agric. Eng., 30, No. 13, 276–285 (2014).

29. Y. Yuan, W. Wang, X. Chu, M. J. Xi, Spectrosc. Spectr. Anal., 36, No. 1, 226–230 (2016).

30. H. D. Zhang, G. R. Li, R. C. Li, W. F. Xu, Y. J. Hua, Laser Optoelectron. Progr., 4, 183–189 (2013).

31. W. C. Guo, M. H. Wang, J. S. Gu, X. H. Zhu, Opt. Precis. Eng., 10, 2720–2727 (2013).

32. J. Sun, A. G. Wei, H. P. Mao, X. H. Wu, X. D. Zhang, Trans. Chin. Soc. Agric. Mach., 7, 272–277 (2014).


Review

For citations:


Liu Y., Xiao H., Hao Y., Ye L., Jiang X., Wang H., Sun X. DIAGNOSIS OF CITRUS GREENING USING RAMAN SPECTROSCOPY-BASED PATTERN RECOGNITION. Zhurnal Prikladnoii Spektroskopii. 2020;87(1):170(1)-170(9).

Views: 265


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)