Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

USING CHEMICAL MODIFIERS AND INCREASING THE PYROLYSIS TEMPERATURE FOR HIGH-SENSITIVITY SPECTROMETRIC DETERMINATION OF CADMIUM IN DAIRY PRODUCTS

Abstract

A direct and in situ digestion technique is reported for electrothermal atomic absorption spectrometric analysis of Cd in dairy products. In situ digestion methods offered high sensitivity due to the absence of sample dilution and minimum risk of contamination or analyte loss. Under optimized conditions, the calibration graph was linear in the range of 0-5 ng/mL, with a limit of detection of 0.012 ng/mL. The method was successfully applied in dairy product samples including milks, yogurt, and milk beverages, with spiked recoveries of 91 to 111%. The accuracy of the proposed method was also validated by wet digestion-based method.

About the Authors

Y. Hu
Chengdu Textile College; Chengdu University of Technology; College of Material Chemistry and Chemical Engineering, Chengdu University of Technology
China
Department of Materials and Environmental Protection, Chengdu, Sichuan 611731; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 610059; Chengdu, Sichuan 610059


M. Xu
Chengdu University of Technology
China

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection

Chengdu 610059


X. Zhao
Chengdu 7th People’s Hospital
China

Department of Clinical Laboratory

Chengdu, Sichuan 610041



W. Qiu
College of Material Chemistry and Chemical Engineering, Chengdu University of Technology
China
Chengdu, Sichuan 610059


R. Liu
Chengdu University of Technology; College of Material Chemistry and Chemical Engineering, Chengdu University of Technology
China

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 610059; Chengdu, Sichuan 610059



A. Zhang
College of Material Chemistry and Chemical Engineering, Chengdu University of Technology
China
Chengdu, Sichuan 610059


References

1. D. Ripolles, J. A. Parron, J. Fraguas, M. Calvo, M. D. Perez, L. Sanchez, J. Dairy Sci., 101, N 2, 912–923 (2018).

2. M. Stiboller, G. Raber, E. L. F. Gjengedal, M. Eggesbo, K. A. Francesconi, Anal. Chem., 89, N 11, 6266–6272 (2017).

3. A. El-Hawiet, Y. J. Chen, K. Shams-Ud-Doha, E. N. Kitova, Y. St-Pierre, J. S. Klassen, Anal. Chem., 89, N 17, 8713–8722 (2017).

4. A. T. Smith, D. Barupala, T. L. Stemmler, A. C. Rosenzweig, Nat. Chem. Biol., 11, N 9, 678 (2015).

5. S. L. Begg, B. A. Eijkelkamp, Z. Y. Luo, R. M. Counago, J. R. Morey, M. J. Maher, C. L. Y. Ong, A. G. McEwan, B. Kobe, M. L. O’Mara, J. C. Paton, C. A. McDevitt, Nat. Commun., 6, N 11 (2015).

6. P. Pohl, A. Bielawska-Pohl, A. Dzimitrowicz, P. Jamroz, M. Welna, A. Lesniewicz, A. Szymczycha-Madeja, Trends Anal. Chem., 93, 67–77 (2017).

7. D. J. Butcher, Appl. Spectrosc. Rev., 52, N 9, 755–773 (2017).

8. M. Y. Burylina, A. A. Pupyshev, J. Anal. Chem., 72, N 9, 935–946 (2017).

9. P. Wu, Y. C. Zhang, R. Liu, Y. Lv, X. D. Hou, Talanta, 77, N 5, 1778–1782 (2009).

10. P. Wu, Y. Gao, G. Cheng, W. Yang, Y. Lv, X. Hou, J. Anal. At. Spectrom., 23, N 5, 752–757 (2008).

11. R. Sanchez, S. Maestre, S. Prats, J. L. Todoli, Anal. Chem., 89, N 24, 13618–13625 (2017).

12. P. Jamroz, K. Greda, A. Dzimitrowicz, K. Swiderski, P. Pohl, Anal. Chem., 89, N 11, 5730–5734 (2017).

13. R. Liu, P. Wu, M. Y. Xi, K. L. Xu, Y. Lv, Talanta, 78, N 3, 885–890 (2009).

14. R. Liu, P. Wu, K. L. Xu, Y. Lv, X. D. Hou, Spectrosc. Acta B: At. Spectrosc., 63, N 6, 704–709 (2008).

15. R. Liu, C. Wang, Y. Xu, J. Hu, D. Deng, Y. Lv, Anal. Chem., 89, N 24, 13269–13274 (2017).

16. R. Liu, S. Zhang, C. Wei, Z. Xing, S. Zhang, X. Zhang, Acc. Chem. Res., 49, N 5, 775–783 (2016).

17. Y. Gao, M. Xu, R. E. Sturgeon, Z. Mester, Z. M. Shi, R. Galea, P. Saull, L. Yang, Anal. Chem., 87, N 8, 4495–4502 (2015).

18. Y. Gao, R. E. Sturgeon, Z. Mester, X. D. Hon, C. B. Zheng, L. Yang, Anal. Chem., 87, N 15, 7996-8004 (2015).

19. R. Liu, X. Liu, Y. R. Tang, L. Wu, X. D. Hou, Y. Lv, Anal. Chem., 83, N 6, 2330–2336 (2011).

20. X. L. Yu, Y. He, Appl. Spectrosc. Rev., 52, N 7, 605–622 (2017).

21. P. Wu, C. H. Li, J. B. Chen, C. B. Zheng, X. D. Hou, Appl. Spectrosc. Rev., 47, N 5, 327–370 (2012).

22. Q. H. Yin, D. M. Zhu, D. Z. Yang, Q. F. Hu, Y. L. Yang, J. Appl. Spectrosc., 84, N 6, 1084–1088 (2018).

23. A. N. Zacharia, M. V. Arabadji, A. N. Chebotarev, J. Appl. Spectrosc., 84, N 1, 1–7 (2017).

24. H. Shirkhanloo, M. Falahnejad, H. Z. Mousavi, J. Appl. Spectrosc., 82, N 6, 1072–1077 (2016).

25. W. Qiu, Y. Zhang, Y. M. Xu, Q. P. Su, R. Liu, C. H. Li, Atom. Spectrosc., 35, N 6, 260–264 (2014).

26. S. S. D. Borges, M. A. Beinner, J. B. B. Silva, Biol. Trace Elem. Res., 167, N 1, 155–163 (2015).

27. F. R. de Amorim, M. B. Franco, C. C. Nascentes, J. B. B. da Silva, Food Anal. Methods, 4, N 1, 41–48 (2011).

28. M. V. Reboucas, D. Domingos, A. S. O. Santos, L. Sampaio, Fuel Process. Technol., 91, N 11, 1702–1709 (2010).

29. M. Resano, J. Briceno, M. A. Belarra, J. Anal. At. Spectrom., 24, N 10, 1343–1354 (2009).


Review

For citations:


Hu Y., Xu M., Zhao X., Qiu W., Liu R., Zhang A. USING CHEMICAL MODIFIERS AND INCREASING THE PYROLYSIS TEMPERATURE FOR HIGH-SENSITIVITY SPECTROMETRIC DETERMINATION OF CADMIUM IN DAIRY PRODUCTS. Zhurnal Prikladnoii Spektroskopii. 2020;87(1):172(1)-172(5).

Views: 260


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)