Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

ALGORITHM FOR RETRIEVAL OF INTEGRATED WATER VAPOR IN ATMOSPHERE OVER LAND FROM SATELLITE-BASED SPECTRORADIOMETER DATA

Abstract

The fast algorithm is proposed for retrieving the atmospheric water vapor maps from multi-spectral images of the Earth captured by Ocean and Land Colour Instrument (OLCI) onboard European research satellite Sentinel-3. The algorithm is based on the multiple regressions between top of atmosphere spectral reflectance, geometrical parameters of satellite scene (solar and view angles) and total water vapor content in atmosphere. The regression equation is derived from the Monte-Carlo radiative transfer model taking into account experimental data on the variability of optical characteristics of the atmosphere and underlying surface. The equations includes top of atmosphere reflectance in near-IR water and oxygen absorption channels together with atmospheric transparent window channels of OLCI to exclude the impact of the surface spectral reflectance and the ground air pressure on the accuracy of atmospheric water vapor remote sensing. The algorithm has been tested on the data of OLCI prototype - Medium Resolution Imaging Spectrometer (MERIS). An ability of the developed algorithm to retrieve of the water vapor spatial distribution without the need for subsatellite data and digital elevation models is shown with an example of MERIS images for the territory of East Europe. A good correspondence is achieved between the MERIS and AERONET (Aerosol Robotic Network) data (standard deviation of integrated water vapor 1.24 kg/m2).

About the Author

S. A. Lisenko
Belarussian State University
Russian Federation


References

1. R. Philipona, B. Dürr, A. Ohmura, C. Ruckstuhl. Geophys. Res. Lett., 32, N 19 (2005) L19809(1-4); doi:10.1029/2005GL023624

2. K. Kourtidis, S. Stathopoulos, A. K. Georgoulias, G. Alexandri, S. Rapsomanikis. Atmos. Chem. Phys., 15, N 19 (2015) 10955-10964

3. L. Honga, C. Yunchanga, W. Xiaominb, Xu Zhifangb, W. Haishena, Hu Henga. Geodesy and Geodynamics, 6, N 2 (2015) 135-142

4. D. D. Turner, B. M. Lesht, S. A. Clough, J. C. Liljegren, H. E. Revercomb, D. C. Tobin. J. Atm. Ocean. Tech., 20, N 1 (2003) 117-132

5. D. D. Turner, S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. E. Cady-Pereira, K. L. Gaustad. IEEE Trans. Geosci. Remote Sens., 45, N 11 (2007) 3680-3690

6. D. Cimini, E. R. Westwater, Y. Han, S. J. Keihm. IEEE Trans. Geosci. Remote Sens., 41, N 11 (2003) 2605-2615

7. M. Bevis, S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, R. H. Ware. J. Geophys. Res., 97, N D14 (1992) 15787-15801

8. G. Gendt, G. Dick, C. Reigber, M. Tomassini, Y. Liu, M. Ramatschi. J. Meteorol. Soc. Jpn., 82, N 1B (2004) 361-370

9. S. de Haan, I. Holleman, A. A. M. Holtslag. J. Appl. Meteor. Climatol., 48, N 7 (2009) 1302-1316

10. B. Schmid, K. J. Thorne, P. Demoulin, R. Peter, C. Mätzler, J. Sekler. J. Geophys. Res., 101, N D5 (1999) 9345-9358

11. M. D. Alexandrov, B. Schmid, D. D. Turner, B. Cairns, V. Oinas, A. A. Lacis, S. I. Gutman, E. R. Westwater, A. Smirnov, J. Eilers. J. Geophys. Res., 114, N D2 (2009) 306-1-306-28

12. S. Steinke, S. Eikenberg, U. Löhnert, G. Dick, D. Klocke, P. Di Girolamo, S. Crewell. Atm. Chem. Phys., 15, N 4 (2015) 2675-2692

13. В. Е. Зуев, В. В. Зуев. Дистанционное оптическое зондирование атмосферы, Санкт-Петербург, Гидрометеоиздат (1992)

14. D. D. Turner, J. E. M. Goldsmith. J. Atm. Ocean. Tech., 16, N 8 (1999) 1062-1076

15. T. Leblanc, I. S. McDermid. Appl. Opt., 47, N 30 (2008) 5592-5603

16. P. Di Girolamo, D. Summa. J. Atm. Ocean. Tech., 26, N 9 (2009) 1742-1762

17. Goddard Space Flight Center, AERONET; http://aeronet.gsfc.nasa.gov

18. B.-C. Gao, Y. J. Kaufman. J. Geophys. Res., 108, N D13 (2003) 4389 (9 p.)

19. R. Lindstrot, M. Stengel, M. Schröder, J. Fischer, R. Preusker, N. Schneider, T. Steenbergen, B. R. Bojkov. Earth. Syst. Sci. Data, 6, N 1 (2014) 221-233

20. P. Schluessel, W. J. Emery. Int. J. Remote Sens., 11, N 5 (1990) 753-766

21. B. J. Sohn, E. A. Smith. J. Climate, 16, N 20 (2003) 3229-3255

22. T. T. Wilheit. IEEE Trans. Geosci. Electron., 17, N 4 (1979) 244-249

23. F. C. Zhou, X. Song, P. Leng, H. Wu, B. H. Tang. Adv. Meteorol., 2016 (2016) Article ID 4126393 (11 p.)

24. NASA, Moderate resolution imaging spectroradiometer; http://modis.gsfc.nasa.gov/data/

25. S. W. Seemann, J. Li, W. P. Menzel, L. E. Gumley. J. Appl. Meteor., 42, N 8 (2003) 1072-1091

26. Z. Li, J.-P. Muller, P. Cross. J. Geophys. Res., 108, N D20 (2003) 4651 (12 p.)

27. Sentinel-3 OLCI User Guide; https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci

28. Б. А. Дворкин. Геоматика, 3, № 20 (2011) 14-26

29. J. Fischer, R. Leinweber, R. Preusker. Sentinel-3 L2 Products and Algorithm Definition, Document Number: S3-L2-SD-03-C02-FUB-ATBD_WaterVapour, N 3.0 (2010)

30. European Space Agency - MERIS Product Handbook, Issue 2.1 (2006)

31. N. Fomferra, C. Brockmann. Beam - the ENVISAT MERIS and AATSR Toolbox; http://www.brockmann-consult.de/cms/web/beam/

32. L. Guanter, M. Del Carmen González-Sanpedro, J. Moreno. Int. J. Geophys. Res., 28, N 3-4 (2007) 709-728

33. European Space Agency. Technical Note: Sentinel-3 OLCI-A pre-flight spectral response functions, N 1 (2016)

34. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Couderti, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, J. V. Auwera. J. Quant. Spectr. Radiat. Transf., 110, N 9-10 (2009) 533-572

35. The MODTRAN 2/3 Report and LOWTRAN 7 MODEL (1996); http://web.gps.caltech.edu/~vijay/pdf/ modrept.pdf

36. K. N. Liou. An introduction to atmospheric radiation. Second edition, New York, London, Academic Press (2002)

37. A. M. Baldridge, S. J. Hook, C. I. Grove, G. Rivera. Remote Sens. Environ., 113, N 4 (2009) 711-715

38. D. E. Bowker, R. E. Davis, D. L. Myriek, K. Stacy, W. T. Jones. Spectral Reflectances of Natural Targets for Use in Remote Sensing Studies. NASA RP-1139, Hampton, NASA Langley Research Center (1985)

39. B. Mayer. Eur. Phys. J. Conf., 1 (2009) 75-99

40. А. В. Васильев. Вестн. СПбГУ, Сер. 4. Физика. Химия, № 3 (2006) 3-14

41. С. А. Лысенко, М. М. Кугейко. Журн. прикл. спектр., 78, № 5 (2011) 793-800 [S. A. Lisenko, M. M. Kugeiko, J. Appl. Speсtr., 78 (2011) 738-745]

42. С. А. Лысенко, М. М. Кугейко. Исслед. Земли из космоса, № 6 (2011) 21--33

43. С. А. Лысенко, В. В. Хомич. Журн. прикл. спектр., 82, № 1 (2015) 115-123 [S. A. Lisenko, M. M. Kugeiko, V. V. Khomich. J. Appl. Spectr., 82 (2015) 111-119]

44. С. А. Лысенко, М. М. Кугейко, В. В. Хомич. Опт. атм. и океана, 29, № 1 (2016) 70-79

45. L. Guanter , L. Gómez-Chova, J. Moreno. Remote Sens. Environ., 112, N 6 (2008) 2898-2913

46. I. L. Katsev, A. S. Prikhach, E. P. Zege, J. O. Grudo, A. A. Kokhanovsky. Atm. Measur. Tech., 3, N 5 (2010) 1403-1422

47. W. von Hoyningen-Huene, J. Yoon, M. Vountas, L. G. Istomina, G. Rohen, T. Dinter, A. A. Kokhanovsky, J. P. Burrows. Atm. Measur. Tech., 4, N 2 (2011) 151-171

48. I. L. Katsev, A. S. Prikhach, E. P. Zege, A. P. Ivanov, A. A. Kokhanovsky. In “Satellite Aerosol Remote Sensing over Land”, Eds. A. A. Kokhanovsky, G. de Leeuw, Berlin, Springer-Praxis (2009) 101-134


Review

For citations:


Lisenko S.A. ALGORITHM FOR RETRIEVAL OF INTEGRATED WATER VAPOR IN ATMOSPHERE OVER LAND FROM SATELLITE-BASED SPECTRORADIOMETER DATA. Zhurnal Prikladnoii Spektroskopii. 2017;84(2):278-288. (In Russ.)

Views: 241


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)