Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

SYNTHESIS AND COMPUTATIONAL STUDIES OF MOLECULAR STRUCTURE AND VIBRATIONAL SPECTRA OF 2-AMINO-4-(4-NITROPHENYL)-4H-PYRANO-[3,2-h]QUINOLINES

Abstract

We have disclosed the synthesis of pyranoquinoline derivatives via a one-pot reaction of 4-nitrobenzaldehyde, malononitrile/ethyl cyanoacetate and 8-hydroxyquinoline using 30 mol.% DMAP in ethanol under reflux conditions. The Fourier transform infrared spectra of ethyl 2-amino-4-(4-nitrophenyl)-4H-pyrano[3,2-h]quinoline-3-carboxylate were recorded within the range 4000-400 cm- 1 . The Hartree-Fock and density functional theory on the 6-311G basis set have been utilized to calculate molecular geometry, vibrational frequencies, atomic charges and thermodynamic parameters. Further, the vibrational energy distribution analysis program was applied to assign the vibrational wavenumbers based on potential energy distribution. The HOMO-LUMO energies, the temperature dependence of the thermodynamic properties and the total electron density, and molecular electrostatic potential maps are also studied.

About the Authors

P. Kour
Shri Mata Vaishno Devi University
India
Faculty of Sciences


A. Kumar
Shri Mata Vaishno Devi University
India
Faculty of Sciences


A. Uppal
Shri Mata Vaishno Devi University
India
Faculty of Sciences


Y. Khajuria
Shri Mata Vaishno Devi University
India
Faculty of Sciences


V. K. Singh
Shri Mata Vaishno Devi University
India
Faculty of Sciences


References

1. S. M. Wickel, C. A. Citron, J. S. Dickschat, Eur. J. Org. Chem., 2906−2913 (2013).

2. J. A. Makawana, M. P. Patel, R. G. Patel, Arch. Pharm., 345, 314−322 (2012).

3. Y. Deng, J. P. Lee, M. Tianasoa-Ramamonjy, J. K. Synder, S. A. D. Etages, D. Synder, M. P. Kanada, C. J. Turner, J. Nat. Prod., 63, 1082–1089 (2000).

4. N. A. Keiko, L. G. Stepanova, M. G. Voronkov, G. I. Potapova, N. O. Gudratov, E. M. Treshchalina, J. Pharm. Chem., 36, 407–409 (2002).

5. S. Prado, H. Ledeit, S. Michel, M. Koch, J. C. Darbord, S. T. Cole, F. Tillequin, P. Brodin, Bioorg. Med. Chem., 14, 5423–5428 (2006).

6. A. R. Saundane, K. Vijaykumar, A. V. Vaijinath, Bioorg. Med. Chem. Lett., 23, 1978−1984 (2013).

7. P. G. Pietta, J. Nat. Prod., 63, 1035–1042 (2000).

8. M. D. Aytemir, B. Özçelik, Eur. J. Med. Chem., 45, 4089–4095 (2010).

9. P. W. Smith, S. L. Sollis, P. D. Howes, P. C. Cherry, I. D. Starkey, K. N. Cobley, H. Weston, J. Scicinski, A. Merritt, A. Whittington, P. Wyatt, N. Taylor, D. Green, R. Bethell, S. Madar, R. J. Fenton, P. J. Morley, T. Pateman, A. Beresford, J. Med. Chem., 41, 787–797 (1998).

10. A. Venkatesham, R. S. Rao, K. Nagaiah, J. S. Yadav, G. RoopaJones, S. J. Basha, B. Sridhar, A. Addlagatta, Med. Chem. Commun., 3, 652−658 (2012).

11. L. Bonsignore, G. Loy, D. Secci, A. Calignano, Eur. J. Med. Chem., 28, 517–520 (1993).

12. D. Armetso, W. M. Horspool, N. Martin, A. Ramos, C. Seoane, J. Org. Chem., 54, 3069–3072 (1989).

13. K. H. Lee, S. M. Kim, J. Y. Kim, Y. K. Kim, S. S. Yoon, Bull. Korean Chem. Soc., 31, 2884–2888 (2010).

14. R. Klingenstein, P. Melnyk, S. R. Leliveld, A. Ryckebusch, C. Korth, J. Med. Chem., 49, 5300–5308 (2006).

15. S. Vandekerckhove, H. G. Tran, T. Desmet, M. D’hooghe, Bioorg. Med. Chem. Lett., 23, 4641–4643 (2013).

16. K. C. Fang, Y. L. Chen, J. Y. Sheu, T. C. Wang, C. C. Tzeng, J. Med. Chem., 43, 3809–3812 (2000).

17. A. K. Sadana, Y. Mirza, K. R. Aneja, O. Prakash, Eur. J. Med. Chem., 38, 533–536 (2003).

18. Y. L. Chen, I. L. Chen, C. M. Lu, C. C. Tzeng, L. T. Tsao, J. P. Wang, Bioorg. Med. Chem., 12, 387–392 (2004).

19. G. Barbosa-Lima, A. M. Moraes, A. S. Araújo, E. T. Silva, C. S. Freitas, Y. R. Vieira, A. Marttorelli, J. C. Neto, P. T. Bozza, M. V. N. Souza, T. M. L. Souza, Eur. J. Med. Chem., 127, 334–340 (2017).

20. K. Rurack, A. Danel, K. Rotkiewicz, D. Grabka, M. Spieles, W. Rettig, Org. Lett., 4, 4647–4650 (2002).

21. F. Liang, Z. Xie, L. Wang, X. Jing, F. Wang, Tetrahedron Lett., 43, 3427–3430 (2002).

22. N. J. Parmar, R. A. Patel, B. D. Parmar, N. P. Talpada, Bioorg. Med. Chem. Lett., 23, 1656 (2013).

23. P. Gunasekaran, P. Prasanna, S. Perumal, Tetrahedron Lett., 55, 329 (2014).

24. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT (2013).

25. M. H. Jamroz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw (2004).

26. A. D. Becke, J. Chem. Phys., 98, 5648 (1993).

27. A. D. Becke, Phys. Rev. A, 38, 3098 (1988).

28. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 37, 785 (1988).

29. A. Frisch, A. B. Neilson, A. J. Holder, GAUSSVIEW User Manual, Gaussian Inc. Pittsburgh, PA (2000).

30. R. S. Mulliken, J. Chem. Phys., 23, 1833 (1955).

31. H. Tanak, Y. Köysal, Y. Ünver, M. Yavuz, S. Isık, K. Sancak, Mol. Phys., 108, 127 (2010).

32. S. Muthu, E. I. Paulraj, Solid State Sci., 14, 476 (2012).

33. R. Mathammal, N. Jayamani, N. Geetha, J. Spectrosc., 2013, 171735 (2013).

34. E. Kavitha, N. Sundaraganesan, S. Sebastian, Ind. J. Pure Appl. Phys., 48, 20–30 (2010)

35. A. Jayaprakash, V. Arjunan, S. Mohan, Spectrochim. Acta, A, 81, 620–630 (2011).

36. J. BevanOtt, J. Boerio-Goates, Chemical Thermodynamics: Principles and Applications, Academic Press, San Diego (2000).

37. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York (1976).

38. J. M. Semanario, Recent Developments and Applications of Modern Density Functional Theory, 4, Elsevier, The Netherlands (1996).

39. T. Yesilkaynak, G. Binzer, F. Mehmet Emen, U. Florke, N. Kulcu, H. Arslan, Eur. J. Chem., 1, 1 (2010).

40. B. Kosar, C. Albayrak, Spectrochim. Acta, A, 78, 96 (2011).


Review

For citations:


Kour P., Kumar A., Uppal A., Khajuria Y., Singh V.K. SYNTHESIS AND COMPUTATIONAL STUDIES OF MOLECULAR STRUCTURE AND VIBRATIONAL SPECTRA OF 2-AMINO-4-(4-NITROPHENYL)-4H-PYRANO-[3,2-h]QUINOLINES. Zhurnal Prikladnoii Spektroskopii. 2019;86(4):666(1)-666(10).

Views: 277


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)