Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

A COMPREHENSIVE STUDY ON THEORETICAL AND EXPERIMENTAL EFFECTS OF NICOTINIC ACID AND PICOLINIC ACID ON THE STRUCTURE AND STABILITY OF HUMAN SERUM ALBUMIN

Abstract

The interaction of nicotinic acid (Nic) and picolinic acid (Pic), as two pyridine carboxylic acids, with human serum albumin (HSA) as a major transport protein in the blood was investigated using UV-Vis, fluorimetry, circular dichroism (CD), and molecular docking studies. The melting point (Tm) and ΔG0(298K) of HSA, as two thermodynamic parameters, were obtained from thermal denaturation of HSA with and without the presence of Nic and Pic. Tm values of 332.5, 336.4, and 333.9 K, and ΔG0298K of 97.4, 99.9, and 118.9 kJ/mol were recorded for HSA alone and following incubation with Nic and Pic, respectively. In chemical denaturation experiments utilizing guanidine hydrochloride (GuHcl), value of ΔG0H2O of 12.5, 16, and 15.3 kJ/mol, [Ligand]1/2 of 2.2, 2.4, and 2.3 M, and m of 5.6, 6.6, and 6.6 kJ/(mol × M) were recorded, respectively. The results of CD, UV-Vis spectroscopy, and molecular dynamics (MD) simulations showed that the binding of Nic and Pic to HSA induced conformational changes in HSA. Furthermore, the study of molecular docking indicated that the binding affinity of the Nic and Pic to site І (subdomain ІІA) is greater than that of site ІI (subdomain ІІIA) of HSA. These results provide valuable insights into the binding mechanisms of Nic and Pic to a plasma protein that is known to play an important role in the delivery of drugs to target organs.

About the Authors

K. G. Chegini
Cellular and Molecular Research Center, Qazvin University of Medical Sciences
Islamic Republic of Iran
Qazvin


S. M. Sadati
Islamic Azad University of Science and Research Branch
Islamic Republic of Iran

Faculty of Basic Sciences

Tehran



A. Rahbarimehr
Islamic Azad University of Science and Research Branch
Islamic Republic of Iran

Faculty of Basic Sciences

Tehran



P. Yaghmaei
Islamic Azad University of Science and Research Branch
Islamic Republic of Iran

Faculty of Basic Sciences

Tehran



A. Farasat
Qazvin University of Medical Sciences
Islamic Republic of Iran

Department of Biotechnology

Qazvin



N. Gheibi
Cellular and Molecular Research Center, Qazvin University of Medical Sciences
Islamic Republic of Iran
Qazvin


References

1. M. D. Waghmare, K. L. Wasewar, S. S. Sonawane, D. Z. Shende, Sep. Purif. Technol., 120, 296–303 (2013).

2. L. A. Carlson, J. Int. Med., 258, 2, 94–114 (2005).

3. N. Khunnawutmanotham, N. Chimnoi, P. Saparpakorn, P. Pungpo, S. Louisirirotchanakul, S. Hannongbua, S. Techasakul, Molecules, 12, 2, 218–230 (2007).

4. M. C. Lourenço, M. V. de Souza, A. C. Pinheiro, M. d. L. Ferreira, R. S. Gonçalves, T. C. M. Nogueira, M. A. Peralta, Arkivoc, 15, 181–191 (2007).

5. W. L. Mitchell, G. M. Giblin, A. Naylor, A. J. Eatherton, B. P. Slingsby, A. D. Rawlings, K. S. Jandu, C. P. Haslam, A. J. Brown, P. Goldsmith, Bioorg. Med. Chem. Lett., 19, No. 1, 259–263 (2009).

6. N. B. Patel, F. M. Shaikh, Saudi Pharm. J., 18, 3, 129–136 (2010).

7. M. Pavlova, A. Mikhalev, M. Kon'shin, M. Y. Vasil'eva, L. Mardanova, T. Odegova, M. Vakhrin, Pharm. Chem. J., 35, 12, 664–666 (2001).

8. R. Grant, S. Coggan, G. Smythe, Int. J. Tryptophan Res., 2, 71 (2009).

9. J. A. Fernandez-Pol, P. D. Hamilton, D. J. Klos, Anticancer Res., 21, 2A, 931–957 (2001).

10. P. Lee, X. Wu, Curr. Pharm. Des., 21, 14, 1862–1865 (2015).

11. C. Müller, R. T. Farkas, F. Borgna, R. M. Schmid, M. Benešová, R. Schibli, Bioconjug. Chem., 28, 9, 2372–2383 (2017).

12. O. Dömötör, T. Tuccinardi, D. Karcz, M. Walsh, B. S. Creaven, É. A. Enyedy, Bioorg. Chem., 52, 16–23 (2014).

13. A. Garg, D. M. Manidhar, M. Gokara, C. Malleda, C. S. Reddy, R. Subramanyam, PLoS One, 8, 5, e63805 (2013).

14. D. P. Yeggoni, M. Gokara, D. Mark Manidhar, A. Rachamallu, S. Nakka, C. S. Reddy, R. Subramanyam, Mol. Pharm., 11, No. 4, 1117–1131 (2014).

15. O. Trott, A. J. Olson, J. Comput. Chem., 31, No. 2, 455–461 (2010).

16. G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, A. J. Olson, J. Comput. Chem., 19, No. 14, 1639–1662 (1998).

17. E. Lindahl, B. Hess, D. Van Der Spoel, Mol. Model. Annual, 7, No. 8, 306–317 (2001).

18. A. W. Schüttelkopf, D. M. Van Aalten, Acta Crystallogr. D: Biol. Crystallogr., 60, No. 8, 1355–1363 (2004).

19. W. F. van Gunsteren, X. Daura, A. E. Mark, Encyclopedia of Computational Chemistry, 2 (2002).

20. A. Farasat, F. Rahbarizadeh, G. Hosseinzadeh, S. Sajjadi, M. Kamali, A. H. Keihan, J. Biomol. Struct. Dynam., 35, No. 8, 1710–1728 (2017).

21. J. Min, X. Meng-Xia, Z. Dong, L. Yuan, L. Xiao-Yu, C. Xing, J. Mol. Struct., 692, No. 1, 71–80 (2004).

22. G. Zhang, Q. Que, J. Pan, J. Guo, J. Mol. Struct., 881, No. 1, 132–138 (2008).

23. C. N. Pace, J. M. Scholtz, Protein Struct.: A Practical Approach, 2, 299–321 (1997).

24. R. A. Deshpande, M. I. Khan, V. Shankar, Biochim. Biophys. Acta - Proteins Proteomics, 1648, No. 1, 184–194 (2003).

25. H. Asghari, K. G. Chegini, A. Amini, N. Gheibi, Int. J. Biol. Macromolecules, 84, 35–42 (2016).

26. Z. Chi, R. Liu, Y. Teng, X. Fang, C. Gao, J. Agric. Food Chem., 58, No. 18, 10262–10269 (2010).

27. S. Patel, A. Datta, J. Phys. Chem. B, 111, No. 35, 10557–10562 (2007).

28. G. Zhang, B. Keita, C. T. Craescu, S. Miron, P. de Oliveira, L. Nadjo, J. Phys. Chem. B, 111, No. 38, 11253–11259 (2007).

29. M. Gokara, V. V. Narayana, V. Sadarangani, S. R. Chowdhury, S. Varkala, D. B. Ramachary, R. Subramanyam, J. Biomol. Struct. Dynam., 35, No. 10, 2280–2292 (2017).

30. R. M. Abreu, H. J. Froufe, M. J. R. Queiroz, I. C. Ferreira, Chem. Biol. Drug. Des., 79, No. 4, 530–534 (2012).

31. V. Mohan, A. C. Gibbs, M. D. Cummings, E. P. Jaeger, R. L. DesJarlais, Curr. Pharm. Design, 11, No. 3, 323–333 (2005).

32. C. Cao, G. Wang, A. Liu, S. Xu, L. Wang, S. Zou, Int. J. Mol. Sci., 17, No. 3, 333 (2016).

33. T. Awang, N. Wiriyatanakorn, P. Saparpakorn, D. Japrung, P. Pongprayoon, J. Biomol. Struct. Dynam., 35, No. 4, 781–790 (2017).

34. G. P. Amini, F. Goshadrou, H. A. Ebrahim, P. Yaghmaei, T. S. Hesami, Iran. Red. Cresc. Med. J., 19, No. 3, e40306 (2017).

35. M. C. Deller, L. Kong, B. Rupp, Acta Crystallogr. F: Struct. Biol. Commun., 72, No. 2, 72–95 (2016).

36. P. Hammarström, B. H. Jonsson, Protein denaturation and the denatured state. Encyclopedia of Life Sciences, Wiley, New York (2005).

37. F. Rashid, S. Sharma, B. Bano, Protein J., 24, No. 5, 283–292 (2005).

38. W. K. Lim, J. Rösgen, S. W. Englander, Proc. Natl. Acad. Sci., 106, No. 8, 2595–2600 (2009).

39. R. Capomaccio, I. Osório, I. Ojea-Jiménez, G. Ceccone, P. Colpo, D. Gilliland, R. Hussain, G. Siligardi, F. Rossi, S. Ricard-Blum, Biointerphases, 11, No. 4, 04B310 (2016).

40. H. Xu, N. Yao, H. Xu, T. Wang, G. Li, Z. Li, Int. J. Mol. Sci., 14, No. 7, 14185–14203 (2013).

41. J. W. Donovan, J. Biol. Chem., 244, No. 8, 1961–1967 (1969).

42. B. Ahmad, S. Parveen, R. H. Khan, Biomacromolecules, 7, No. 4, 1350–1356 (2006).

43. H. Zhang, P. Wu, Y. Wang, J. Cao, Int. J. Biol. Macromol., 92, 593–599 (2016).


Review

For citations:


Chegini K.G., Sadati S.M., Rahbarimehr A., Yaghmaei P., Farasat A., Gheibi N. A COMPREHENSIVE STUDY ON THEORETICAL AND EXPERIMENTAL EFFECTS OF NICOTINIC ACID AND PICOLINIC ACID ON THE STRUCTURE AND STABILITY OF HUMAN SERUM ALBUMIN. Zhurnal Prikladnoii Spektroskopii. 2019;86(4):672(1)-672(9).

Views: 293


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)