Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

PREDICTION RESULTS OF DIFFERENT MODELLING METHODS IN SOIL NUTRIENT CONCENTRATIONS BASED ON SPECTRAL TECHNOLOGY

Abstract

Spectroscopy has been applied in monitoring soil nutrient concentrations. Two types of soil samples, sandy loam and silty loam, were selected as the research objects. The UV-visible-near infrared reflectance spectroscopy data and total carbon (TC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP), available potassium (FK), and slowly available potassium (SK) concentrations were measured. We compared the prediction results within and between two different types of soil with regard to the soil nutrient concentrations using four modelling methods, which were principal component regression (PCR), partial least squares regression (PLSR), least squares support vector machine (LS-SVM), and back propagation neural network (BPNN) models. In the prediction results within a given type of soil, LS-SVM and PLSR had better stability. In the prediction results of different types of soil, BPNN and LS-SVM had a high accuracy in most soil nutrient concentrations. By comparing different modelling methods, this study provides a basis for the subsequent selection of suitable models based on spectral technology to establish various soil nutrient models.

About the Authors

X.-Y. Li
Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences); Shandong Provincial Key Laboratory of Ocean Environmental Monitoring Technology; National Engineering and Technological Research Center of Marine Monitoring Equipment
China


P.-P. Fan
Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences); Shandong Provincial Key Laboratory of Ocean Environmental Monitoring Technology; National Engineering and Technological Research Center of Marine Monitoring Equipment
China


Y. Liu
Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences); Shandong Provincial Key Laboratory of Ocean Environmental Monitoring Technology; National Engineering and Technological Research Center of Marine Monitoring Equipment
China


G.-L. Hou
Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences); Shandong Provincial Key Laboratory of Ocean Environmental Monitoring Technology; National Engineering and Technological Research Center of Marine Monitoring Equipment
China


Q. Wang
Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences); Shandong Provincial Key Laboratory of Ocean Environmental Monitoring Technology; National Engineering and Technological Research Center of Marine Monitoring Equipment
China


M.-R. Lv
Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences); Shandong Provincial Key Laboratory of Ocean Environmental Monitoring Technology; National Engineering and Technological Research Center of Marine Monitoring Equipment
China


References

1. D. Summers, M. Lewis, B. Ostendorf, Ecol. Indic., 11, No. 1, 123–131 (2011).

2. M. Vohland, M. Ludwig, S. Thiele-Bruhn, Geoderma, 223-225, No. 1, 88–96 (2014).

3. S. M. Tiquia, J. Lloyd, D. A. Herms, Appl. Soil Ecol., 21, No. 1, 31–48 (2002).

4. H. Q. Ding, Q. P. Lu, Spectrosc. Spectr. Anal., 32, No. 1, 88–91 (2012).

5. L. Luan, Y. Wang, X. Li, J. Near Infrared Spectrosc., 24, No. 4, 363–372 (2016).

6. A. M. Rady, D. E. Guyer, W. Kirk, J. Food Eng., 135, No. 2, 11–25 (2014).

7. W. Ng, B. P. Malone, B. Minasny, Geoderma, 289, 150–160 (2017).

8. A. Sakudo, Clin. Chim. Acta, 455, No. 3, 181–188 (2016).

9. S. Jia, H. Li, Y. Wang, Geoderma, 268, 92–99 (2016).

10. D. J. Brown, K. D. Shepherd, M. G. Walsh, Geoderma, 132, No. 3, 273–290 (2006).

11. A. V. Bilgili, H. M. V. Es, F. Akbas, J. Arid. Environ., 74, No. 2, 229–238 (2010).

12. F. Feyziyev, M. Babayev, S. Priori, Open J. Soil Sci., 06, No. 3, 52–58 (2016).

13. T. Naes, H. Martens, J. Chemom., 2, No. 2, 155–167 (1988).

14. S. Wold, M. Sjöström, L. Eriksson, Chemom. Intell. Lab. Syst., 58, No. 2, 109–130 (2001).

15. J. A. K. Suykens, J. Vandewalle, Neural Process. Lett., 9, No. 3, 293–300 (1999).

16. R. Hecht-Nielsen, Neural Networks, 1, No. 1, 65–93 (1988).

17. K. Kawamura, Y. Tsujimoto, M. Rabenarivo, Remote Sens., 9, No. 10, 1081 (2017).

18. M. Tatzber, F. Mutsch, A. Mentler, Appl. Spectrosc., 64, No. 10, 1167–1175 (2010).

19. Cheng Wen Chang, D. A. Laird, M. J. Mausbach, Soil Sci. Soc. Am. J., 65, No. 2, 480–490 (2001).

20. S. Wold, M. Sjöström, L. Eriksson, Chemom. Intell. Lab. Syst., 58, No. 2, 109–130 (2001).

21. R. M. Balabin, E. I. Lomakina, Analyst, 136, No. 8, 1703–1712 (2011).

22. D. K. Ghose, S. S. Panda, P. C. Swain, J. Hydrol., 394, No. 3-4, 296–304 (2010).

23. R. K. Douglas, S. Nawar, M. C. Alamar, Sci. Total Environ., 616–617, 147–155 (2017).

24. D. Summers, M. Lewis, B. Ostendorf, Ecol. Indic., 11, No. 1, 123–131 (2011).

25. L. J. Janik, S. T. Forrester, A. Rawson, Chemom. Intell. Lab. Syst., 97, No. 2, 179–188 (2009).

26. H. Wang, D. Hu, Brain Neural Networks, 1, 279–283 (2006).

27. Zhi-biao, Zhao, Yang, J. Bionic. Eng., 5, No. 3, 253–257 (2008).

28. Q. Zhang, Q. Li, G. Zhang, Anal. Methods, 4, No. 7, 2039–2047 (2012).


Review

For citations:


Li X., Fan P., Liu Y., Hou G., Wang Q., Lv M. PREDICTION RESULTS OF DIFFERENT MODELLING METHODS IN SOIL NUTRIENT CONCENTRATIONS BASED ON SPECTRAL TECHNOLOGY. Zhurnal Prikladnoii Spektroskopii. 2019;86(4):673(1)-673(7).

Views: 283


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)