Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

SYNTHESIS, CHARACTERIZATION, AND NMR STUDY OF OXO-CENTERED TRINUCLEAR COMPLEXES [Fe2IIINiIIO(O2CC2H5)6(py)3]•py and [Fe2IIINiIIO(O2CC2H5)6(H2O)3]•H2O

Abstract

Two μ3-oxo carboxylate-bridged heteronuclear complexes, [Fe2IIINiIIO(O2CC2H5)6(H2O)3]·H2O and [Fe2IIINiIIO(O2CC2H5)6(py)3] ·py, were prepared and characterized by several spectroscopic techniques including NMR, X-ray diffraction, IR, ESR, and UV. X-ray diffraction measurements demonstrated that the Fe2NiO clusters of the complexes were close to threefold symmetry in crystals. The ligands coordinated to different metal atoms were almost equivalent in the IR timescale but in equivalent in the NMR timescale. The NMR results showed that the largest 1H NMR chemical shift of the complex was 95.1 ppm, implying its paramagnetic property, which was weakened by the antiferromagnetic interaction of metal ions through the μ3-O bridge. NMR and IR studies indicated that the complexes were stable in various nonpolar and moderately polar solvents, such as CDCl3 and d3-MeCN, but they were decomposed into metal ions and the corresponding ligands in strong polar solvents, such as water, at room temperature. Assignments of the 1H NMR spectra of the complexes were made on the basis of relative intensities, broadening, variable temperature experiments, spin-lattice relaxation times, and substitution by appropriate ligands. The 1H spin-lattice relaxation time T1 and variable-temperature NMR experiments were also applied to investigate the solution structures and dynamics of the complexes. It is worth noting that the 1H chemical shift of the pyridine coordinated to the metals could be greater than 90 ppm

About the Authors

Xin Wang
Xiamen University
China
Xiamen 361005


Zhiwei Chen
Xiamen University
China
Xiamen 361005


Yingyang Lv
Xiamen University
China
Xiamen 361005


Shuhui Cai
Xiamen University
China
Xiamen 361005


Zhong Chen
Xiamen University
China
Xiamen 361005


References

1. M. Colmont, O. Mentre, N. Henry, Prog. J. Solid. State. Chem., 260, 101–106 (2018).

2. N. Shan, S. J. Vickers, H. Adams, M. D. Ward, J. A. Thomas, Angew. Chem. Int. Ed., 43, 3938–3943 (2004).

3. I. Ratera, C. Sporer, D. Ruiz-Molina, N. Ventosa, J. Baggerman, A. M. Brouwer, C. Rovira, J. Veciana, J. Am. Chem. Soc., 129, 6117–6121 (2007).

4. A. Olchowka, J. Colmont, M. Aliev, Cryst. Eng. Commun., 19, 936–940 (2017).

5. Xiao-Yu Qi, Kai Wang, Lun Wang, J. Solid State Chem., 63, 91–98 (2016).

6. F. Paul, G. Da Costa, A. Bondon, N. Gauthier, S. Sinbandhit, L. Toupet, K. Costuas, J. F. Halet, C. Lapinte, Organometallics, 26, 874–878 (2007).

7. S. Ghumaan, S. Mukherjee, S. Kar, D. Roy, S. M. Mobin, R. B. Sunoj, G. K. Lahiri, Eur. J. Inorg. Chem., 21, 4426–4430 (2006).

8. D. M. DAlessandro, F. R. Keene, Chem. Rev., 106, 2270–2276 (2006).

9. R. W. Wu, M. Poyraz, F. E. Sowrey, C. E. Anson, S. Wocadlo, A. K. Powell, U. A. Jayasooriya, R. D. Cannon, T. Nakamoto, M. Katada, H. Sano, Inorg. Chem., 37,1913–1918 (1998).

10. A. Dikhtiarenko, S. Khainakov, J. R. Garcia, Inorg. Chem., 454, 107–122 (2017).

11. S. Kiana, M. Yazdanbakhsh, M. Jamialahmadi, J. Chem. Soc., Faraday Trans., 130, 28–32 (2014).

12. A. Heckmann, C. Lambert, M. Goebel, R. Wortmann, Angew. Chem. Int. Ed., 43, 5851–5855 (2004).

13. N. Suaud, A. Gaita-Arino, J. M. Clemente-Juan, E. Coronado, Chem. Eur. J., 10, 4041–4046 (2004).

14. A. Vlachos, V. Psycharis, C. P. Raptopoulou, N. Lalioti, Y. Sanakis, G. Diamantopoulous, M. Fardis, M. Fardis, M. Karayanni, G. Papavassiliou, A. Terzis, Inorg. Chim. Acta, 357, 3162–3168 (2004).

15. L. Banci, Nuclear and Electron Relaxation. The Magnetic Nucleus-Unpaired Electron Coupling in Solution, VCH, Weinheim (1991).

16. J. R. Houston, W. H. Casey, Inorg. Chem., 44, 5176–5122 (2005).

17. M. Itou, M. Otake, Y. Araki, O. Ito, H. Kido, Inorg. Chem., 44, 1580–1586 (2005).

18. M. M. Glass, K. Belmore, J. B. Vincent, Polyhedron, 12, 133–139 (1993).

19. C. P. Raptopoulou, Y. Sanakis, A. K. Boudalis, V. Psycharis, Polyhedron, 24, 711–718 (2005).

20. Z. Chen, S. H. Cai, J. L. Ye, G. T. Lu, L. N. Zhang, Chin. J. Struct. Chem., 18, 227–232 (1999).

21. A. Morsali, S. A. Beyramabadi, H. Chegini, J. Structural. Chem., 57, 875–882 (2016).

22. I. Bertini, Y.K. Gupta, C. Luchinat, G. Parigi, M. Peana, L. Sgheri, J. Yuan, J. Am. Chem. Soc., 129, 12786–12792 (2007).

23. Z. G. Wang, T. R. Holman, L. Que, Magn. Reson. Chem., 31, 78–81 (1993).

24. D. Prodius, C. Turta, V. Mereacre, S. Shova, M. Gdaniec, Y. Simonov, J. Lipkowski, V. Kuncser, G. Filoti, A. Caneschi, Polyhedron, 25, 2175–2182 (2006).

25. I. Khosravi, M. Mirzaei, A. Bauza, Polyhedron, 81, 39–42 (2014).

26. L. Meesuk, U. A. Jayasooriya, R. D. Cannon, J. Am. Chem. Soc., 109, 2009–2012 (1987).

27. M. B. Moreira, C. F. N. Da Silva, R. B. P. Pesci, Dalton Trans., 45, 16799–16803 (2016).

28. Hua-Xin Zhang, Yoichi Sasaki, Masaaki Abe, J. Org. Chem., 797, 29–33 (2015).

29. Minfeng Lu, Marie Colmont, Marielle Huve, Inorg. Chem., 53, 12058–12062 (2014).

30. A. Mavrandonakis, K. Vogiatzis, D. Boese, A. Daniel, Inorg. Chem., 54, 8251–8257 (2015).


Review

For citations:


Wang X., Chen Zh., Lv Y., Cai Sh., Chen Zh. SYNTHESIS, CHARACTERIZATION, AND NMR STUDY OF OXO-CENTERED TRINUCLEAR COMPLEXES [Fe2IIINiIIO(O2CC2H5)6(py)3]•py and [Fe2IIINiIIO(O2CC2H5)6(H2O)3]•H2O. Zhurnal Prikladnoii Spektroskopii. 2019;86(3):488(1)-488(9).

Views: 299


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)