Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

DETECTION OF PRIMARY AND SECONDARY CANCERS USING RAMAN SPECTROSCOPY AND SELF-CONSTRUCTING NEURAL NETWORKS

Abstract

The present study aimed to propose a new method for the optimization of neural networks, known as self-constructing neural network (SCNN), to discriminate the Raman spectra of normal tissues, as well as primary and metastatic (secondary) cancers. According to the results, this novel method could significantly improve the ability of the neural network and thoroughly classify the Raman spectra relating to the pathologic states (100% accuracy).

About the Authors

Zohreh Dehghani-Bidgoli
Islamic Azad University, Kashan Branch
Islamic Republic of Iran

Department of Biomedical Engineering

Kashan



Tahereh Khamechian
Kashan University of Medical Sciences
Islamic Republic of Iran

Department of Medical Pathology

Kashan



References

1. I. P. Santos, E. M. Barroso, T. C. Bakker Schut, P. J. Caspers, C. G. F. van Lanschot, D.-H. Choi, M. F. van der Kamp, R. W. H. Smits, R. van Doorn, R. M. Verdijk, V. Noordhoek Hegt, J. H. von der Thüsen, C. H. M. van Deurzen, L. B. Koppert, G. J. L. H. van Leenders, P. C. Ewing-Graham, H. C. van Doorn, C. M. F. Dirven, M. B. Busstra, J. Hardillo, A. Sewnaik, I. ten Hove, H. Mast, D. A. Monserez, C. Meeuwis, T. Nijsten, E. B. Wolvius, R. J. Baatenburg de Jong, G. J. Puppels, S. Koljenović, Analyst, 142, No. 17, 3025–3047 (2017).

2. L. A. Austin, S. Osseiran, C. L. Evans, Analyst, 141, 476–503 (2016).

3. Q. Tu, C. Chang, Nanomedicine: Nanotechnol., Biol. Med., 8, No. 5, 545–558 (2012).

4. H. Krishna, S. K. Majumder, P. K. Gupta, J. Raman Spectrosc., 43, 1884–1894 (2012).


Review

For citations:


Dehghani-Bidgoli Z., Khamechian T. DETECTION OF PRIMARY AND SECONDARY CANCERS USING RAMAN SPECTROSCOPY AND SELF-CONSTRUCTING NEURAL NETWORKS. Zhurnal Prikladnoii Spektroskopii. 2019;86(3):489(1)-489(5).

Views: 306


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)