Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

UV-VISIBLE SPECTROPHOTOMETRY WITH ARSENAZO III FOR THE DETERMINATION OF SAMARIUM

Abstract

UV-visible spectrophotometry with Arsenazo III is used to determine the samarium concentration. The results confirm that the concentration of Sm3+ in the aqueous solution from 2.7×10- 6 to 10.8×10- 6 mol/L obeys the Lambert-Beer law. The quantitative relationship between the absorbance and concentrations of Ca2and F- in the solution with 2.7×10- 6 mol/L Sm3has been obtained. The absorbance of the solution with 10.8×10- 6 mol/L Sm3+ is found to be 0.58, which is not affected by the concentrations of Ca2and F-. So, if the concentration of Ca2+ and F- were known, the quantitative relationship between absorbance and Sm3+ concentration can be obtained, which is convenient for determining the Sm3+ concentration in aqueous solution with Ca2+ and F- by UV-visible spectrophotometry.

About the Authors

Xing-Min Guo
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing
China
Beijing 100083


Qi-Cao Yan
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing
China
Beijing 100083


Xiao-Ting Meng
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing
China
Beijing 100083


Rui-Xin Ma
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing
China
Beijing 100083


References

1. Z. Q. Xue, L. Liu, Z. Liu, M. Li, D. Lee, R. J. Chen, Y. Q. Guo, A. R. Yan, Scr. Mater., 113, 226–230 (2016).

2. W. Sun, M. G. Zhu, Y. K. Fang, Z. Y. Liu, H. S. Chen, Z. H. Guo, W. Li, J. Magn. Magn. Mater., 378, 214–216 (2015).

3. M. Kuru, O. Sahin, S. Ozarslan, A. E. Ozmetin, J. Alloy. Compd., 694, 726–732 (2017).

4. R. K. Singh, S. V. Kamat, R. P. Mathur, J. Magn. Magn. Mater., 379, 300–304 (2015).

5. V. I. Kushnirenko, M. V. Sopinskyy, E. G. Manoilov, V. S. Khomchenko, J. Alloy. Compd., 451, 209–211 (2008).

6. H. Hakala, P. Liitti, K. Puukka, J. Peuralahti, K. Loman, J. Karvinen, P. Ollikka, A. Ylikoski, V. M. Mukkala, J. Hovinen, Inorg. Chem. Commun., 5, 1059–1062 (2002).

7. J. D. Castillo, A. C. Yanes, S. Abe, P. F. Smet, J. Alloy. Compd., 635, 136–141 (2015).

8. T. Saito, H. Kitazima, J. Magn. Magn. Mater., 32, 2154–2157 (2011).

9. G. Cordoba, C. Caravaca, J. Electroanal. Chem., 572, 145–151 (2004).

10. T. Iida, T. Nohira, Y. Ito, Electrochim. Acta, 48, 2517–2521 (2003).

11. T. Iida, T. Nohira, Y. Ito, Electrochim. Acta, 46, 2537–2544 (2001).

12. T. Iida, T. Nohira, Y. Ito, Electrochim. Acta, 48, 901–906 (2003).

13. L. Massot, P. Chamelot, P. Taxil, Electrochim. Acta, 50, 5510–5517 (2005).

14. Y. H. Liu, Y. D. Yan, M. L. Zhang, J. N. Zheng, Y. Zhao, P. Wang, T. Q. Yin, X. Y. Jing, W. Han, Electrochim. Acta, 163, D672–D681 (2016).

15. Y. H. Liu, Y. D. Yan, M. L. Zhang, Y. Liang, J. M. Qu, P. Li, D. B. Ji, Y. Xue, X. Y. Jing, W. Han, Electrochim. Acta, 249, 278–289 (2017).

16. Q. C. Yan, X. M. Guo. J. Alloy. Compd., 747, 994–1001 (2018).

17. X. M. Guo, Q. C. Yan, China Patent CN201610183598.1 (2016).

18. Q. C. Yan, X. M. Guo, Solid State Commun., 272, 63–66 (2018).

19. R. Schramm, Phys. Sci. Rev., 1, 1–17 (2016).

20. L. O. Dubenskaya, G. D. Levitskaya, N. P. Poperechnaya, J. Anal. Chem., 60, 304–309 (2005).

21. É. Biémont, Recent Phys. Scr., 119, 55–60 (2005).

22. H. Kunzendorf, H. A. Wollenberg, Nucl. Instrum. Methods, 87, 197–203 (1970).

23. E. Woznicka, M. Kopacz, M. Umbreit, J. Klos, J. Inorg. Biochem., 101, 774–782 (2007).

24. N. T. Birgani, S. Elhami, J. AOAC Int., 100, 224–229 (2017).

25. B. Debus, M. Sliwa, H. Miyasaka, J. Abe, C. Ruckebusch, Chemometr. Intell. Lab., 128, 101–110 (2013).

26. T. I. Shabatina, A. V. Vlasov, E. V. Vovk, D. J. Stufkens, G. B. Sergeev, Spectrochim. Acta A, 56, 2539–2543 (2000).

27. M. B. Kime, D. Makgoale, Chem. Eng.Commun., 203, 1648–1655 (2016).

28. N. H. Choi, S. K. Kwon, H. Kim, J. Electrochem. Soc., 160, A973–A979 (2013).

29. H. Rohwer, E. Hosten, Anal. Chim. Acta, 339, 271–277 (1997).

30. H. Rohwer, N. Collier, E. Hosten, Anal. Chim. Acta, 314, 219–223 (1995).

31. B. Buděšínský, Collect. Czech. Chem. Commun., 28, 1858–1866 (1963).

32. N. C. Kendrick, Anal. Biochem., 76, 487–501 (1976).

33. R. Borissova, E. Mitropolitska, Talanta, 24, 49–51 (1979).

34. L. F. Qiu, X. H. Kang, T. S. Wang, Sep. Sci. Technol., 11, 32–35 (1991).

35. M. D’Orazio, S. Tonarini, Anal. Chim. Acta, 351, 325–335 (1997).

36. Y. J. Dong, K. Gai, X. X. Gong, J. Chongqing Normal Un-ty (Nat. Sci. Ed.), 21, 43–45 (2004).

37. Y. L. Shi, E. Edward, E. R. Van, J. Chem. Soc. Dalton Trans., 967–974 (1998).

38. K. Matharu, S. K. Mittal, S. K. A. Kumar, Spectrochim. Acta A, 145, 165–175 (2015).

39. X. Z. Yang, Hydrometallurgy China, 26, 109–112 (2007).


Review

For citations:


Guo X., Yan Q., Meng X., Ma R. UV-VISIBLE SPECTROPHOTOMETRY WITH ARSENAZO III FOR THE DETERMINATION OF SAMARIUM. Zhurnal Prikladnoii Spektroskopii. 2019;86(3):492(1)-492(7).

Views: 417


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)