Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

HYDROTHERMAL SYNTHESIS AND OPTICAL PROPERTIES OF CuInS2 MICRO-/NANOMATERIALS BY USING GEMINI SURFACTANT AS SOFT TEMPLATE

Abstract

We demonstrate in this paper the shape-controlled synthesis of CuInS2 micro-/nanoparticles through a facile hydrothermal method. Samples with different morphologies, i.e., nanoparticles and porous microspheres, are hydrothermally prepared in the presence of Gemini surfactant 1,10-bis(4-methyl-4-hexadecylpiperazine)decamethylene dibromide (Pi-16-10-16) as soft template. The products were characterized by using SEM, XRD, XPS, and EDS. Furthermore, the charge-discharge capability of the as-prepared CuInS2 samples is investigated by using the samples as the cathode in a lithium battery. The charge-discharge curves for the cells of CuInS2 exhibit higher initial discharge capacity showing a discharge capacity of 673 mAh/g,which is important for potential applications in photovoltaic (PV) and photoelectrochemical areas.

About the Authors

Wen-Gui Chang
West Anhui University, Department of Materials and Chemical Engineering, Anhui Province Laboratory of Biomimetic Sensor and Detecting Techniques
China

Lu’an 237012



Li-Li Tao
West Anhui University, Department of Materials and Chemical Engineering, Anhui Province Laboratory of Biomimetic Sensor and Detecting Techniques
China

Lu’an 237012



References

1. X. L. Gou, F. Y. Cheng, Y. H. Shi, L. Zhang, S. J. Peng, J. Chen, P. W. Shen, J. Am. Chem. Soc., 128, 7222–7229 (2006).

2. D. C. Pan, L. J. An, Z. M. Sun, W. Hou, Y. Yang, Z. Z. Yang, Y. F. Lu, J. Am. Chem. Soc., 130, 5620–5621 (2008).

3. J. M. Peza-Tapia, A. Morales-Acevedo, M. Ortega-López, Sol. Energ. Mater. Sol. Cells, 93, 544–548 (2009).

4. K. Das, S. K. Panda, S. Gorai, P. Mishra, S. Chaudhuri, Mater. Res. Bull., 43, 2742–2750 (2008).

5. J. E. Halpert, F. S. F. Morgenstern, B. Ehrler, Y. Vaynzof, D. Credgington, N. C. Greenham, ACS Nano, 9, 5857–5867 (2015)

6. Y. Li, Y. Wang, R. Tang, X. Wang, P. Zhu, X. Zhao, C. Gao. J. Phys. Chem. C, 119, 2963–2968 (2015).

7. W. Yue, F. Wei, C. He, D. Wu, N. Tang, Q. Qiao, RSC Adv., 7, 37578–37587 (2017).

8. S. J. Peng, J. Liang, L. Zhang, Y. H. Shi, J. Chen, J. Cryst. Growth, 305, 99–103 (2007).

9. W. Yang, Y. Oh, J. Kim, H. Kim, H. Shin, J. Moon, ACS Appl. Mater. Interfaces, 8, 425–431 (2016).

10. B. Chen, S. Chang, D. Li, L. Chen, Y. Wang, T. Chen, B. Zou, H. Zhong, A. L. Rogach, Chem. Mater., 27, 5949–5956 (2015).

11. W. C. Huang, C. H. Tseng, S. H. Chang, H. Y. Tuan, C. C. Chiang, L. M. Lyu, M. H. Huang, Langmuir, 28, 8496–8501 (2012).

12. J. Zhang, W. Sun, L. Yin, X. Miao, D. Zhang, J. Mater. Chem. C, 2, 4812–4817 (2014).

13. M. J. Rosen, D. J. Tracy, J. Surfactant. Deterg., 4, 547–554 (1998).

14. K. Czechura, A. Sayari, Chem. Mater., 18, 4147–4150 (2006).

15. M. S. Bakshi, P. Sharma, T. S. Banipal, Mater. Lett., 61, 5004–5009 (2007).

16. M. S. Bakshi, F. Possmayer, N. O. Petersen, Chem. Mater., 19, 1257–1266 (2007).

17. M. S. Bakshi, F. Possmayer, N. O. Petersen, J. Phys. Chem. C, 112, 8259–8265 (2008).

18. L. W. Zhao, H. L. Xie, J. Disper, Sci. Technol., 29, 284–288 (2008).

19. Q. S. Zhang, H. M. Zhang, B. N. Guo, Fine Chem., 23, 435–438 (2006).

20. Y. Liu, M. Zhang, Y. Q. Gao, R. Zhang, Y. T. Qian, Mater. Chem. Phys., 101, 362–366 (2007).

21. Y. Liu, H. Y. Xu, Y. T. Qian, Cryst. Growth Des., 6, 1304–1037 (2006).


Review

For citations:


Chang W., Tao L. HYDROTHERMAL SYNTHESIS AND OPTICAL PROPERTIES OF CuInS2 MICRO-/NANOMATERIALS BY USING GEMINI SURFACTANT AS SOFT TEMPLATE. Zhurnal Prikladnoii Spektroskopii. 2019;86(3):493(1)-493(6).

Views: 246


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)