Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

FOURIER SPECTRA OF QUANTUM SYSTEMS EХCITED BY LASER RADIATION AND THE EXACT SOLUTION OF THEIR DYNAMICS EQUATIONS WITHOUT INTEGRATION

Abstract

Simulation of the coherent excitation of molecules by laser radiation is carried out. It is based on simple models, i. e., quantum systems with N+1 energy level. The exact solution of differential equations describing the process in terms of the simplest semi-classical Rabi model is obtained without integration of differential equations but discrete mathematics with Fourier transform and discrete orthogonal polynomials is used. The Fourier transform realizes the transition from continuum t-space with time-dependent probability amplitudes an(t) of a quantum system to discrete Fourier space where Fourier spectra Fn(ω) are spectral images of an(t). The spectra are shown to be described by some discrete orthogonal polynomial sequence corresponding to the quantum system. The example shows how using specially constructed polynomials one can calculate the Fourier spectra and find the probability amplitudes an(t) describing the excitation of a quantum system. The established one-to-one correspondence between the polynomial characteristics and the coefficients of differential equations allows us to calculate all the characteristics of quantum systems whose excitation is described by the solution. Thus, the transition from functions an(t) to their spectral space allows one to solve some dynamical equations without integration reducing the problem to calculating the finite sum from 0 to N.

About the Authors

V. A. Savva
Belarusian State Technological University
Belarus
Minsk, 220006


S. Banjak
Belarusian State Technological University
Belarus
Minsk, 220006


References

1. D. Braak, Q.-H. Chen, M. T. Batchelor, E. Solano. J. Phys. A: Math. Theor., 49 (2016) 300301

2. Q. Xie, H. Zhong, M. T. Batchelor, C. Lee. J. Phys. A: Math. Theor., 50, N 11 (2017) 113001

3. A. H. Zewail. Femtochemistry. The Nobel Prize in Chemistry (1999)

4. А. А. Ищенко, С. А. Асеев, В. Н. Баграташвили, В. Я. Панченко, Е. А. Рябов. УФН, 184, № 7 (2014) 681—722

5. Г. Н. Макаров. УФН, 187, № 3 (2017) 241—276

6. F. Arute, K. Arya, R. Babbush. Nature, 574 (2019) 505—510

7. N. Gisin. Quantum Chance, Non-Locality, Teleportation аnd Other Quantum Marvels, Springer (2014) [Н. Жизан. Квантовая случайность, АНФ, Москва (2018)]

8. M. Shapiro, P. Brumer. Quantum Control of Molecular Processes, Wiley-VCH (2012).

9. L. O. Castaños. Opt. Commun., 430 (2019) 176—188

10. L. O. Castaños. Phys. Lett. A, 383 (2019) 1997—2003

11. R. Grimaudo, A. S. M. de Castro, H. Nakazato, A. Messina. Ann. Phys., 530 (2018) 1800198

12. K. Dai, H. Wu, P. Zhao, M. Li, Q. Liu, G. Xue, X. Tan, H. Yu, Y. Yu. Appl. Phys. Lett., 111 (2017) 242601

13. S. Felicetti, E. Rico, C. Sabin, T. Ockenfels, J. Koch, M. Leder, C. Grossert, M. Weitz, E. Solano. Phys. Rev. A, 95 (2017) 013827

14. A. Dareau, Y. Meng, P. Schneeweiss, A. Rauschenbeutel. Phys. Rev. Lett., 121 (2018) 253603

15. I. D. Feranchuk, A. V. Leonov, O. D. Skoromnik. J. Phys. A: Math. Theor., 49, N 45 (2016) 454001

16. P. Schneeweiss, A. Dareau, C. Sayrin. Phys. Rev. A, 98 (2018) 021801(R)

17. A. Erderlyi, W. Magnus, F. Oberhettinger, F. G. Tricomi. Higher Transcendental Functions, McGraw-Hill (1953)

18. A. F. Nikiforov, S. K. Suslov, V. B. Uvarov. Classical Orthogonal Polynomials of a Discrete Variable, Berlin-Heidelberg, Springer (2012)

19. R. Koekoek, P. A. Leskey, R. F. Swarttouw. Hypergeometric Orthogonal Polynomials and their q-Analogues, Heidelberg, Springer (2000)

20. В. А. Савва, В. И. Зеленков, А. С. Мазуренко. Журн. прикл. спектр., 58 (1993) 256—270 [V. A. Savva, V. I. Zelenkov. A. S. Mazurenko. J. Appl. Spectr., 58 (1993) 187—200]

21. V. Savva, V. Zelenkov, A. Mazurenko. Integral Transform. Special Funct., 10, N 3–4 (2000) 299—310

22. В. А. Савва, В. И. Зеленков, О. В. Хлус. В сб. “Development of the Mathematical Ideas of Mykhailo Kravchuk (Krawtchouk)”, Kyiv–New York (2004) 242—258

23. S. Banjak. J. Interdiscipl. Math., 22, N 6 (2019) 1051—1059


Review

For citations:


Savva V.A., Banjak S. FOURIER SPECTRA OF QUANTUM SYSTEMS EХCITED BY LASER RADIATION AND THE EXACT SOLUTION OF THEIR DYNAMICS EQUATIONS WITHOUT INTEGRATION. Zhurnal Prikladnoii Spektroskopii. 2020;87(5):724-731. (In Russ.)

Views: 278


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)