Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

СELL POPULATION DYNAMICS MONITORING IN VIDEO BASED ON INTEGRAL OPTICAL FLOW AND MOTION MAPS

Abstract

The method for monitoring cell population movement in microscopic video-sequences based on integral optical flow and motion maps is proposed. Through adjustment and calibration of the optical system and averaging consecutive frames, high-quality subsequent images are obtained. Short-term dynamic characteristics are determined by optical flow. Based on optical flow, integral optical flow is calculated and used to create motion maps, and these maps are used to analyze and describe motions in any region of interest. Therefore, different types of cell movements, including directional motion, aggregation and dispersion can be identified. Our method doesn’t require training, it can be used for situation monitoring and analysis, or as a component of comprehensive systems. Experiments performed on synthesized and real microscopic video images show the effectiveness of our method.

About the Authors

H. Chen
Zhejiang Shuren University
China
310015, Hangzhou


O. V. Nedzvedz
Belarusian State Medical University
Belarus
Minsk, 220116


Sh. Ye
Zhejiang Shuren University
China
310015, Hangzhou


A. M. Nedzvedz
Belarusian State University; United Institute of Informatics Problems of National Academy of Sciences of Belarus
Belarus
Minsk, 220030;
Minsk, 220020


S. V. Ablameyko
Belarusian State University; United Institute of Informatics Problems of National Academy of Sciences of Belarus
Belarus
Minsk, 220030;
Minsk, 220020


References

1. K. A. Tatke, N. Desai. Proc. 4th Int. Conf. Innovations in Information, Embedded and Communication Systems, March 17—18, 2017 (2017) 1—7

2. S. Huh, S. Eom, E. Ker, L. Weiss, T. Kanade. Proc. 9th IEEE Int. Sympos. Biomedical Imaging, May 2—5, 2012 (2012) 390—393

3. C. A. O. Toro, C. G. Martín, A. G. Pedrero, A. R. Gonzalez, E. Menasalvas. Proc. 11th Int. Conf. Practical Applications of Computational Biology and Bioinformatics, June 21—23, 2017 (2017) 137—145

4. M. Saha, C. Chakraborty, D. Racoceanu. Comput. Med. Imaging and Graphics, 64 (2017) 29—40

5. A.-A. Liu, K. Li, T. Kanade. Proc. IEEE Int. Sympos. Biomed. Imaging, April 14—17, 2010 (2010) 580—583

6. M. Maška, O. Daněk, S. Garasa, A. Rouzaut, A. Muñoz-Barrutia. IEEE Transact. Med. Imaging, 32, N 6 (2013) 995—1006

7. R. Nathiya, G. Sivaradje. ARPN J. Engin. Appl. Sci., 10, N 6 (2015) 2691—2696

8. Y. Mao, Z. Yin. Proc. 19th Int. Conf. Med. Image Computing and Computer-Assisted Intervention, October 17—21, 2016 (2016) 685—692

9. W. Nie, H. Cheng, Y. Su. IEEE Transact. Big Data, 3, N 4 (2017) 458—469

10. V. Kimbahune, N. Uke. Int. J. Engin. Sci. Technol., 3, N 3 (2011) 2448—2453

11. A. Mosig, S. Jäger, C. Wang, S. Nath, I. Ersoy, K. Palaniappan, S. Chen. Algorithms Mo. Biol., 4 (2009); https://doi.org/10.1186/1748-7188-4-10

12. B. Solmaz, B. Moore, M. Shah. IEEE Transact. Pattern Analys. Machine Intel., 34, N 10 (2012) 2064—2070

13. B. Horn, B. Schunck. Determining Optical Flow, Artificial Intel., 17, N 1-3 (1981) 185—203

14. M. Tao, J. Bai, P. Kohli, S. Paris. Comput. Graphics Forum, 31, N 2 (2012) 345—353

15. H. Chen, S. Ye, О. В. Недзьведь, С. В. Абламейко. Журн. прикл. спектр., 85, № 1 (2018) 135—143 [H. Chen, S. Ye, O. Nedzvedz, S. Ablameyko. J. Appl. Spectr., 85, N 1 (2018) 126—133]

16. H. Chen, S. Ye, O. Nedzvedz, S. Ablameyko, Z. Bai. Pattern Recognition and Image Analysis, 29, N 1 (2019) 131—143


Review

For citations:


Chen H., Nedzvedz O.V., Ye Sh., Nedzvedz A.M., Ablameyko S.V. СELL POPULATION DYNAMICS MONITORING IN VIDEO BASED ON INTEGRAL OPTICAL FLOW AND MOTION MAPS. Zhurnal Prikladnoii Spektroskopii. 2020;87(5):777-789. (In Russ.)

Views: 747


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)