Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

INTERCALIBRATION OF SATELLITE AND GROUND-BASED MEASUREMENTS OF CO2 MEAN MOLE FRACTIONS AT THE NDACC SITE St. Petersburg

Abstract

We compared ground-based (Bruker 125 HR) and satellite (OCO-2) datasets of simultaneous CO2 measurements in the vicinity of St. Petersburg. It is shown that correcting the ground-based XCO2 values by 2.5% and choosing an optimal setup during the spectra analysis allowed us to reach good agreement between the satellite and ground-based measurements. The bias between the two datasets is –0.01—0.16 ppm (–0.00—0.04%) for the means, and the standard deviation of the means is 1.42—1.49 ppm (0.35—0.37%) with a spatial mismatch of XCO2 data pairs of 100—300 km. Such small disagreement between the two types of measurements permits to use both methods for solving the inverse task of atmospheric transfer — the estimation of anthropogenic emissions of CO2.

About the Authors

Ya. A. Virolainen
Saint Petersburg State University
Russian Federation
Saint Petersburg, 199034


A. A. Nikitenko
Saint Petersburg State University
Russian Federation
Saint Petersburg, 199034


Yu. M. Timofeyev
Saint Petersburg State University
Russian Federation
Saint Petersburg, 199034


References

1. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley. Intergovernmental Panel on Climate Change (2013): https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf

2. National Institute for Environmental Studies report. A guidebook on the use of satellite greenhouse gases observation data to evaluate and improve greenhouse gas emission inventories (2018): https://www.nies.go.jp/soc/doc/GHG_Satellite_Guidebook_1st_12d.pdf

3. Committee on Earth Observing Satellites (CEOS) report. A constellation architecture for monitoring carbon dioxide and methane from space (2018): http://ceos.org/document_management/Virtual_Constellations/ACC/Documents/CEOS_AC-VC_GHG_White_Paper_Version_1_20181009.pdf

4. H. Bovensmann, M. Buchwitz, J. P. Burrows, M. Reuter, T. Krings, K. Gerilowski, O. Schneising, J. Heymann, A. Tretner, J. Erzinger. Atmos. Meas. Tech., 3, N 4 (2010) 781—811

5. P. Fu, Y. Xie, C. E. Moore, S. W. Myint, C. J. Bernacchi. Earths Future, 7, N 9 (2019) 1058—1070

6. D. Wunch, P. O. Wennberg, G. Osterman, B. Fisher, B. Naylor, C. M. Roehl, C. ODell, L. Mandrake, C. Viatte, D. W. Griffith, N. M. Deutscher, V. A. Velazco, J. Notholt, T. Warneke, C. Petri, M. de Maziére, M. K. Sha, R. Sussmann, M. Rettinger, D. Pollard, J. Robinson, I. Morino, O. Uchino, F. Hase, T. Blumenstock, M. Kiel, D. G. Feist, S. G. Arnold, K. Strong, J. Mendonca, R. Kivi, P. Heikkinen, L. Iraci, J. Podolske, P. W. Hillyard, S. Kawakami, M. K. Dubey, H. A. Parker, E. Sepulveda, O. E. G. Rodriguez, Y. Te, P. Jeseck, M. R. Gunson, D. Crisp, A. Eldering. Atmos. Meas. Tech., 10, N 6 (2017) 2209—2238

7. Наблюдательная сеть TCCON: https://tccon-wiki.caltech.edu/

8. Наблюдательная сеть IRWG/NDACC: https://www2.acom.ucar.edu/irwg

9. S. Barthlott, M. Schneider, F. Hase, A. Wiegele, E. Christner, Y. González, T. Blumenstock, S. Dohe, O. E. García, E. Sepúlveda, K. Strong, J. Mendonca, D. Weaver, M. Palm, N. M. Deutscher, T. Warneke, J, Notholt, B. Lejeune, E. Mahieu, N. Jones, D. W. T. Griffith, V. A. Velazco, D. Smale, J. Robinson, R. Kivi, P. Heikkinen, U. Raffalski. Atmos. Meas. Tech., 8, N 3 (2015) 1555—1573

10. Ю. М. Тимофеев, И. А. Березин, Я. А. Виролайнен, М. В. Макарова, А. В. Поляков, А. В. Поберовский, Н. Н. Филиппов, С. Ч. Фока. Изв. РАН ФАО, 55, № 1 (2019) 65—72 [Yu. M. Timofeyev, I. A. Berezin, Ya. A., Virolainen, M. V. Makarova, A. V. Polyakov, A. V. Poberovsky, S. Ch. Foka. Izv. Atm. and Ocean. Phys., 55, N 1 (2019) 59—64]

11. Y. Timofeyev, Y. Virolainen, M. Makarova, A. Poberovsky, A. Polyakov, D. Ionov, S. Osipov, H. Imhasin. J. Mol. Spectr., 323 (2016) 2—14

12. F. Hase, J. W. Hannigan, M. T. Coffey, A. Goldman, M. Höpfner, N. B. Jones, C. P. Rinsland, S. W. Wood. J. Quant. Spectrosc. Radiat. Transfer, 87 (2004) 25—52

13. Я. А. Виролайнен. Журн. прикл. спектр., 85, № 3 (2018) 453–460 [Ya. A. Virolainen. J. Appl. Spectr., 85, N 3 (2018) 462—469]

14. База данных OCO-2 по СО2 https://co2.jpl.nasa.gov/download/?dataset=OCO2LtCO2v9&product=LITE

15. Orbiting Carbon Observatory-2 (OCO-2) Data Product User’s Guide https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2_DUG.V9.pdf

16. Г. М. Неробелов, Ю. М. Тимофеев, С. П. Смышляев, Я. А. Виролайнен, М. В. Макарова, С. Ч. Фока. Опт. атм. и океана, 33, № 10 (2020) (в печати)

17. М. В. Макарова, А. В. Поберовский, Ф. Хазе, Ю. М. Тимофеев, Х. Х. Имхасин. Журн. прикл. спектр., 83, № 3 (2016) 437—444 [M. V. Makarova, A. V. Poberovskii, F. Hase, Yu. Timofeyev, Kh. Kh. Imhasin. J. Appl. Spectr., 83, N 3 (2016) 429—436]


Review

For citations:


Virolainen Ya.A., Nikitenko A.A., Timofeyev Yu.M. INTERCALIBRATION OF SATELLITE AND GROUND-BASED MEASUREMENTS OF CO2 MEAN MOLE FRACTIONS AT THE NDACC SITE St. Petersburg. Zhurnal Prikladnoii Spektroskopii. 2020;87(5):816-820. (In Russ.)

Views: 241


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)