Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

DIPODAL MOLECULAR DEVICE AS FLUORESCENT SENSOR FOR Na(I) DETECTION

Abstract

A novel dipodal fluorescent sensor, N1 ,N3 -bis(2-(2,3,4-trihydroxybenzylidene)amino)ethylmalonamide (MEP), suitable for the practical measurement of sodium concentration has been successfully developed and characterized by several spectroscopic techniques. The design of the dipodal scaffold includes a central unit, spacer, and fluorophore moiety as structural key features. The fluorescence sensor MEP adopts a photoinduced electron transfer mechanism and shows excellent selectivity for Na(I) among other biologically and environmentally important metal ions, viz., Na(I), K(I), Al(III), Cr(III), Fe(III), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II) in DMSO by demonstrating a remarkable enhancement in the fluorescence intensity from 345.5 to 705.5 a.u. at λmax = 532.9 nm. The 1:2 binding stoichiometry between the ligand and Na(I) ion was confirmed by Stern–Volmer and Hill Plot. The association constant determined for the ligand with the sodium metal ion is found to be very high, 7.7×106 M–2 , which may be attributed to the trapping of sodium ions into the pseudo cavities of the ligand created by interaction of the ligand and sodium ions. The studies explore potential applications of the ligand for Na(I) ions detection in environmental and industrial applications.

About the Authors

Vijay Dangi
National Institute of Technology, Department of Chemistry
India
Kurukshetra, Haryana-136119


Minati Baral
National Institute of Technology, Department of Chemistry
India
Kurukshetra, Haryana-136119


B. K. Kanungo
Sant Longowal Institute of Engineering and Technology, Department of Chemistry
India
Longowal-148106


References

1. A. P. de Silva, H. Q. Gunaratne, T. Gunnlaugsson, A. J. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev., 97, 1515–1566 (1997).

2. J. F. Callan, A. P. de Silva, D. C. Magri, Tetrahedron, 61, 8551–8588 (2005).

3. А. Coskun, M. Banaszak, R. D. Astumian, J. F. Stoddart, B. A. Grzybowski, Chem. Soc. Rev., 41, 19–30 (2012).

4. R. Akbar, M. Baral, B. K. Kanungo, J. Coord. Chem., 71, N 1, 135–154 (2018).

5. M. Baral, A. Gupta, R. Akbar, B. K. Kanungo, J. Appl. Chem., 2016, 3757418/1–3757418/10 (2016).

6. M. Baral, A. Gupta, B. K. Kanungo, Spectrochim. Acta A, 162, 6–15 (2016).

7. M. Burnier, Sodium in Health and Disease, Informa Healthcare, New York (2008).

8. The Na+, K+ Pump, Part B: Cellular Aspects, Eds. J. C. Skou, J. G. Norby, A. B. Maunsbach, M. Esmann, A. R. Liss, Wiley, New York (1998).

9. E. Murphy, D. A. Eisner, Circ. Res., 104, 292 (2009).

10. D. M. Bers, W. H. Barry, S. Despa, Cardiovasc. Res., 57, 897 (2003).

11. T. R. Harring, N. S. Deal, D. C. Kuo, Emerg. Med. Clin. North Am., 32, 379–401 (2014).

12. Z. J. Twardowski, Hemodial. Int., 12, 412–425 (2008).

13. A. Minta, R. Y. Tsien, J. Biol. Chem., 264, 19449 (1989).

14. Chemosensors of Ion and Molecule Recognition; NATO ASI Series, Eds. J. P. Desvergne, A. W. Czarnik, Kluwer Academic, Dordrecht, The Netherlands (1996).

15. O. S. Wolfbeis, Fiber Optic Chemical Sensors and Biosensors, II, CRC Press, Boca Raton, FL (1991).

16. P. Gans, A. Sabatini, A. Vacca, Talanta, 43, 1739–1753 (1996).

17. P. Gans, A. Sabatini, A. Vacca, Ann. Chim. (Rome), 89, 45–49 (1999).

18. S. K. Sahoo, S. E. Muthu, M. Baral, B. K. Kanungo, Spectrochim. Acta A, 63, 574 (2006).

19. L. J. Bellamy, The Infra-red Spectra of Complex Molecules, 3rd ed., Chapman and Hall Ltd., London (1975).

20. R. M. Silverstein, G. C. Bassler, T. C. Morrill, Spectrometric Identification of Organic Compounds, 4th ed., Wiley, New York (1981).

21. Y. K. Tsui, S. Devaraj, Y. P. Yen, Sens. Actuat. B: Chem., 161, 510–519 (2012).

22. А. P. de Silva, H. Q. N. Gunaratne, J. L. Habib-Jiwan, C. P. McCoy, T. E. Rice, J. P. Soumillion, Angew. Chem., Int. Ed. Engl., 34, 1728–1731 (1995).

23. H. Huarui, M. A. Mortellaro, M. J. P. Leiner, S. T. Young, R. J. Fraatz, J. K. Tusa, Anal. Chem., 75, 549–555 (2003).

24. Graham R. C. Hamilton, Suban K. Sahoo, Sukanta Kamila, Narinder Singh, Navneet Kaur, Barry W. Hyland, John F. Callan, Chem Soc Rev., 7, N 44(13), 4415–4432 (2015).

25. Y. M. Poronik, G. Clermont, M. Blanchard-Desce, D. T. Gryko, J. Org. Chem., 78, N 23, 11721–11732 (2013).

26. Kundan Tayade, G. Krishna Chaitanya, Jasminder Singh, Narinder Singh, Sopan Ingle, Sanjay Attarde, Anil Kuwar, J. Lumin., 154, 68–73 (2014).

27. M. Everett, A. Jolleys, W. Levason, D. Pugh, G. Reid, Chem. Commun., 50, 5843–5846 (2014).

28. H. A. Benesi, J. H. Hilderbrand, J. Am. Chem. Soc., 71, 2703–2704 (1949).

29. G. Kaur, N. Kaur, Sens Actuat. B: Chem., 265, 134–141 (2018).

30. W. Caetano, M. Tabak, J. Colloid Interface Sci., 225, 69–81 (2000).

31. Y.-J. Hua, Y. Liua, T.-Q. Sunb, A.-M. Bai, J.-Q. Lu, Z.-B. Pi, Int. J. Biol. Macromol., 39, 280–285 (2006).

32. H. W. Jun, L. A. Luzzi, P. L. Hsu, J. Pharm. Sci., 61, N 11, 1835–1837 (1972).

33. X. Mei, C. Wolf, J. Am. Chem. Soc., 126, 14736–14737 (2004).

34. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer, Berlin (2006).


Review

For citations:


Dangi V., Baral M., Kanungo B.K. DIPODAL MOLECULAR DEVICE AS FLUORESCENT SENSOR FOR Na(I) DETECTION. Zhurnal Prikladnoii Spektroskopii. 2020;87(5):821-831.

Views: 265


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)