Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

OPTICAL METHOD BASED ON A GASEOUS SCINTILLATOR FOR NEUTRON ENERGY SPECTRUM MEASUREMENTS

Abstract

The neutron energy spectrum is one of the most important characteristic parameters. A novel optical measurement method is proposed. The purpose of the method is to determine the neutron spectra according to the recoil proton track length. The recoil protons deposit energy along the track and excite scintillator luminescence. The luminescence image directly reflects the neutron energy spectra. The Geant4 simulation toolkit is used to study the characteristics of the recoil proton luminescence distribution and determine the detector system response. A reconstruction algorithm based on the potential reduction interior point is developed and applied to spectrum unfolding. This method has the advantages of an intuitive measurement, good energy resolution, suitability for various charged particle beams, a wide energy range, convenience, and an adjustable range.

About the Authors

Guanying Wang
Institute of Microelectronics, Chinese Academy of Sciences
China
Beijing, 100029


Lijun Zhang
Institute of Microelectronics, Chinese Academy of Sciences
China
Beijing, 100029


Wengang Song
Institute of Microelectronics, Chinese Academy of Sciences
China
Beijing, 100029


Lingxin Chen
Institute of Microelectronics, Chinese Academy of Sciences
China
Beijing, 100029


Qiang Li
Institute of Microelectronics, Chinese Academy of Sciences; Anhui University
China
Beijing, 100029; 
Hefei, 230601


Zhanqi Zheng
Institute of Microelectronics, Chinese Academy of Sciences
China
Beijing, 100029


Ran Han
Beijing Institute of Spacecraft Environment Engineering
China
Beijing, 100029


Xiaoping Ouyan
Northwest Institute of Nuclear Technology
China
Xi'an, 710024


References

1. N. O. Jarvis, Plasma Phys. Controlled Fusion, 36, N 2, 209–244 (1994).

2. B. Wolle, Phys. Rep., 312, 1–86 (1999).

3. V. Y. Glebov, C. Stoeckl, T. C. Sangster, et al. Rev. Sci. Instrum., 75, N 10, 3559–3562 (2004).

4. Z. A. Ali, V. Y. Glebov, M. Cruz, et al. Rev. Sci. Instrum., 79, N 10, 3559 (2008).

5. D. T. Casey, J. A. Frenje, M. Gatu Johnson, et al. Rev. Sci. Instrum., 84, N 4, 043506 (2013).

6. D. T. Casey, J. A. Frenje, M. G. Johnson, et al. Rev. Sci. Instrum., 83, N 10, 10D912 (2012).

7. E. Mendoza, D. Cano-Ott, C. Guerrero, et al. Nucl. Instrum. Methods Phys. Res. A, 768, 55–61 (2014).

8. Lénárd Pál, Imre Pázsit, Nucl. Instrum. Methods Phys. Res. A, 693, 26–50 (2012).

9. M. J. Koskelo, W. A. Sielaff, D. L. Hall, et al. J. Radioanal. Nucl. Chem., 248, N 2, 257–262 (2001).

10. L. Chen, X. P. Ouyang, Z. B. Zhang, et al. World Academy of Science, Engineering and Technology (2011).

11. E. D. Bourret-Courchesne, S. E. Derenzo, M. J. Weber, Nucl. Instrum. Methods Phys. Res. A, 601, N 3, 358–363 (2009).

12. G. Laczko, V. Dangendorf, M. Krämer, et al. Nucl. Instrum. Methods Phys. Res. A, 535, N 1-2, 216–220 (2004).

13. U. Titt, A. Breskin, R. Chechik, et al. Nucl. Instrum. Methods Phys. Res. A, 416, N 1, 85–99 (1998).

14. F. A. F. Fraga, L. M. S. Margato, S. T. G. Fetal, et al. Nucl. Instrum. Methods Phys. Res. A, 478, N 1-2, 357–361 (2002).

15. F. A. F. Fraga, L. M. S. Margato, S. T. G. Fetal, et al. Nucl. Instrum. Methods Phys. Res. A, 513, N 1, 379–387 (2003).

16. E. Aprile, A. E. Bolotnikov, A. I. Bolozdynya, T. Doke, Noble Gas Detectors (2006).

17. J. Liu, X. Ouyang, L. Chen, et al. Nucl. Instrum. Methods Phys. Res. A, 694 (Complete), 157–161 (2012).

18. J. Allison, et al. Nucl. Instrum. Methods Phys. Res. A, 835, 186–225 (2016).

19. N. S. Phan, R. J. Lauer, E. R. Lee, et al. Astroparticle Phys., 84, 82–96 (2016).

20. I. Mor, D. Vartsky, V Dangendorf, et al. J. Instrum., 12, N 12, C12022 (2017).

21. J. Zhang, X. Ouyang, X. Zhang, et al. Nucl. Instrum. Methods Phys. Res. A, 816, 125–130 (2016).

22. S. Agosteo, A. Fazzi, M. Introini, M. Lorenzoli, A. Pola, Radiat. Measur., 85, 1–17 (2016).

23. H. Shahabinejad, M. Sohrabpour, Radiat. Phys. Chem., 136, 9–16 (2017).

24. H. Jing, L. Jinliang, Z. Zhongbing, et al. Sci. Rep., 8, N 1, 13363 (2018).

25. G. Wang, R. Han, X. Ouyang, et al. Chin. Phys. C, 41, N 5, 181–185 (2017).

26. D. W. Freeman, D. R. Edwards, A. E. Bolon, Nucl. Instrum. Methods Phys. Res. A, 425, N 3, 549–576 (1999).


Review

For citations:


Wang G., Zhang L., Song W., Chen L., Li Q., Zheng Zh., Han R., Ouyan X. OPTICAL METHOD BASED ON A GASEOUS SCINTILLATOR FOR NEUTRON ENERGY SPECTRUM MEASUREMENTS. Zhurnal Prikladnoii Spektroskopii. 2020;87(5):839-846.

Views: 244


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)