Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

ANALYSIS OF ROCK POWDERS BY LASER-INDUCED BREAKDOWN SPECTROSCOPY COMBINED WITH THE GRAPHITE DOPING METHOD

Abstract

The analysis of geological samples using laser-induced breakdown spectroscopy (LIBS) is strongly affected by matrix effects. To investigate the improvement of matrix effects by the graphite doping method, rock powder was mixed with graphite powder and pressed into pellets. Four groups of samples with the same graphite content were prepared from a mixture of seven different rock powders and four graphite powders (0, 25, 50, and 75 wt.%). To reduce some of the pulse-to-pulse fluctuations, the internal standardization method was adopted. Four sets of calibration curves of Ca and Mg were prepared using pellet samples with the same graphite content. The influence of graphite content on laser-induced plasma temperature and electron density was further investigated. The coefficients of determination (R2) of the calibration curves after doping graphite are larger than those without doping, and the stability of the spectral intensity, plasma temperature, and electron density after doping are also improved. In particular, when the doping percentage is 50%, the matrix effect is significantly improved. The results show that the graphite doping method has great potential for improving the matrix effects of LIBS in the analysis of rock powder samples.

About the Authors

J. J. Jiа
Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science; University of Science and Technology of China
China
Hefei 230031;
Hefei 230026


F. Hongbo
Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science
China
Hefei 230031


W. Huadong
Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science; University of Science and Technology of China
China
Hefei 230031;
Hefei 230026


D. Fengzhong
Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science; University of Science and Technology of China
China
Hefei 230031;
Hefei 230026


Z. Zhirong
Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science; University of Science and Technology of China
China
Hefei 230031;
Hefei 230026


References

1. G. Poupeau, F. X. L. Bourdonnec, T. Carter, S. Delerue, M. S. Shackley, J. A. Barrat, S. Dubernet, P. Moretto, T. Calligaro, M. Milić, K. Kobayashi, J. Archaeol. Sci., 37, N 11, 2705–2720 (2010).

2. T. D. T. Oyedotun, Geol., Ecol., Landscapes, 2, N 2, 148–154 (2018).

3. X. Chen, G. Yao, J. Cai, Y. Huang, X. Yuan, J. Nat. Gas Sci. Eng., 48, 145–156 (2017).

4. J. M. Scott, J. M. Palin, N. Z. J. Geol. Geophys., 51, N 2, 105–113 (2008).

5. A. K. Rai, G. S. Maurya, R. Kumar, A. K. Pathak, J. K. Pati, Aw. K. Rai, J. Appl. Spectrosc., 83, N 6, 1089–1095 (2017).

6. D. A. Cremers, L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, Cambridge University Press, New York, 110–111 (2006).

7. A. Koujelev, V. Mottoros, D. Gratton, A. Dudelzak, Can. Aeronaut. Space J., 55, N 2, 97–106 (2009).

8. F. C. Alvira, G. M. Bilmes, T. Flores, L. Ponce, Appl. Spectrosc., 69, N 10, 1205–1209 (2015).

9. S. Awasthi, R. Kumar, A. K. Rai, J. Appl. Spectrosc., 84, 1–5 (2017).

10. S. S. Golik, O. A. Bukin, A. A. Il’in, E. B. Sokolova, A. V. Kolesnikov, M. Yu. Babiy, Yu. N. Kul’chin, A. A. Gal’chenko, J. Appl. Spectrosc., 79, N 3, 471–476 (2012).

11. S. Pandhija, N. K. Rai, A. K. Rai, S. N. Thakur, Appl. Phys. B: Lasers Opt., 98, N 1, 231–241 (2010).

12. S. A. Beldjilali, E. Axente, A. Belasri, T. Baba-Hamed, J. Appl. Spectrosc., 84, N 3, 472–477 (2017).

13. M. Dell'Aglio, R. Gaudiuso, G. S. Senesi, A. D. Giacomo, C. Zaccone, M. T. Miano, O. D. Pascale, J. Environ. Monit., 13, N 5, 1422–1426 (2011).

14. P. Singh, E. Mal, A. Khare, S. Sharma, J. Cult. Herit., 33, 71–82 (2018).

15. M. Wall, Z. Sun, Z. T. Alwahabi, Opt. Express, 24, N 2, 1507 (2016).

16. Z. Hou, Z. Wang, J. Liu, W. Ni, Z. Li, Opt. Express, 22, N 11, 12909 (2014).

17. M. Singh, V. Karki, A. Sarkar, J. Appl. Spectrosc., 83, N 3, 497–503 (2016).

18. D. Andrade, M. Sperança, E. R. Pereirafilho, Anal. Methods, 9, N 35, 5156 (2017).

19. R. J. Lasheras, J. Anzano, C. Bellogálvez, M. Escudero, J. O. Caceres, Anal. Lett., 50, N 8, 1325–1334 (2016).

20. Z.Zhu, J.Li, Y. Guo, X.Cheng, Y.Tang, L.Guo, X. Li,Y.Lu, J. Anal. At. Spectrom., 33, N 2, 205 (2017).

21. A. A. I. Khalil, M. A. Morsy, H. Z. Eldeen, Opt. Laser Technol., 96, 227–237 (2017).

22. S. Pandhija, N. K. Rai, A. K. Rai, S. N. Thakur, Appl. Phys. B: Lasers Opt., 98, N 1, 231–241 (2010).

23. H. Griem, Plasma Spectroscopy, McGraw-Hill, New York, 320–357 (1964).

24. T. Fujimoto, R. W. Mcwhirter, Phys. Rev. A, 42, N 11, 6588–6591 (1990).


Review

For citations:


Jiа J.J., Hongbo F., Huadong W., Fengzhong D., Zhirong Z. ANALYSIS OF ROCK POWDERS BY LASER-INDUCED BREAKDOWN SPECTROSCOPY COMBINED WITH THE GRAPHITE DOPING METHOD. Zhurnal Prikladnoii Spektroskopii. 2020;87(5):847(1)-847(6).

Views: 244


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)