Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

DETERMINATION OF LORAZEPAM IN DRUG FORMULATION AND BIO FLUIDS USING A SPECTROPHOTOMETRIC METHOD AND RESPONSE SURFACE METHODOLOGY

Abstract

A novel, simple, sensitive, and selective kinetic spectrophotometric method has been developed for the determination of lorazepam in pharmaceutical and bioloical samples. The procedure is based on the catalytic effect of lorazepam on the Janus Green-bromate reaction system. The change in absorbance was followed spectrophotometrically at 618 nm. To obtain the maximum sensitivity, the reagents concentration, temperature, and time were optimized by one at the time method. Under optimum experimental conditions, the calibration curve was linear over the range 0.3–19.5 μg/mL of lorazepam, including two linear segments. The relative standard deviations (n = 5) for 1.0, 5.0, and 15.0 μmol/L of lorazepam were 1.09, 1.03, and 0.97%, respectively. The limit of detection was 0.08 μg/mL of lorazepam. An experimental check under these optimal conditions confirmed good agreement in the RSM results. The developed method was successfully applied for the determination of lorazepam in real samples, and the obtained results are in a good agreement with those using HPLC.

About the Authors

Sara Ghorbanpoor
Department of Chemistry, Yazd Branch, Islamic Azad University
Islamic Republic of Iran
Yazd


M. Reza Shishehbor
Department of Chemistry, Yazd Branch, Islamic Azad University
Islamic Republic of Iran
Yazd


Ali Sheibani
Department of Chemistry, Yazd Branch, Islamic Azad University
Islamic Republic of Iran
Yazd


Mohadeseh Safaei
Department of Chemistry, Yazd Branch, Islamic Azad University
Islamic Republic of Iran
Yazd


Ali Nazari
Department of Chemistry, Yazd Branch, Islamic Azad University
Islamic Republic of Iran
Yazd


References

1. M. A. Omar, K. M. B. El-Din, H. Salem, O. H. Abdelmageed, Spectrochim. Acta, 193, 310–317 (2018).

2. M. R. Shishehbore, A. Sheibani, A. Haghdost, Spectrochim. Acta, 81, 304–307 (2011).

3. M. R. Shishehbore, A. Sheibani, E. Mirparizi, Chin. Chem. Lett., 23, 611–614 (2012).

4. M. L. Sullivan, N. D. Bonawitz, Plant Sci., 269, 148–152 (2018).

5. M. R. Shishehbore, Z. Aghamiri, Iran. J. Pharm. Res., 13, 373–379 (2014).

6. M. Bahram, S. Mojarrad, M. Moghtader, J. Iran. Chem. Soc., 15, 779–786 (2018).

7. G. Schoetz, O. Trapp, V. Schurig, Anal. Chem., 72, 2758–2764 (2000).

8. Z. Es’Haghi, L. Daneshvar, P. Salari, S. Bandegi, Chemija, 20, 181–186 (2009).

9. E. Konoz, A. H. M. Sarrafi, M. Samadizadeh, S. Boreiri, J. Chem., 9, 2232–2238 (2012).

10. B. Rezaei, O. Rahmanian, A. A. Ensafi, Microchim. Acta, 180, 33–39 (2013).

11. S. N. Muchohi, K. Obiero, G. O. Kokwaro, B. R. Ogutu, I. M. Githiga, G. Edwards, C. R. Newton, J. Chromatogr. B, 824, 333–340 (2005).

12. M. E. Abdel‐Hamid, D. Sharma, J. Liq. Chrom. Relat. Tech., 27, 641–660 (2004).

13. J. A. Yahwak, R. R. Riker, G. L. Fraser, S. Subak‐Sharpe, Pharmacotherapy, 28, 984–991 (2008).

14. J. Ghasemi, A. Niazi, R. Ghorbani, Anal. Lett., 39, 1159–1169 (2006).

15. H. Zhu, J. Luo, J. Pharm. Biomed. Anal., 39, 268–274 (2005).

16. B. Rezaei, M. K. Boroujeni, A. A. Ensafi, Electrochim. Acta, 123, 332–339 (2014).

17. D. Orlovic, D. Radulovic, D. Ivanovic, Z. Vujic, Chromatographia, 52, 732–734 (2000).

18. M. Jug, M. Bećirević-Laćan, Drug Dev. Ind. Pharm., 34, 817–826 (2008).

19. C. Pham-Huy, G. Villain-Pautet, H. Hua, N. Chikhi-Chorfi, H. Galons, M. Thevenin, J. M. Warnet, J. Biochem. Biophys. Methods, 54, 287–299 (2002).

20. L. V. Panlilio, E. B. Thorndike, C. W. Schindler, Psychopharmacology, 179, 374–382 (2005).

21. G. V. Popović, D. M. Sladić, V. M. Stefanović, L. B. Pfendt, J. Pharm. Biomed. Anal., 31, 693–699 (2003).

22. O. Quintela, A. Cruz, A. De Castro, M. Concheiro, M. Lopez-Rivadulla, J. Chromatogr. B, 825, 63–71 (2005).

23. M. Jamal, H. Hadi, Egypt. J. Basic Appl. Sci., 5, 151–156 (2018).

24. J. Ghasemi, A. Niazi, Anal. Chim. Acta, 533, 169–177 (2005).

25. R. Raviadaran, D. Chandran, L. H. Shin, S. Manickam, LWT, 96, 58–65 (2018).

26. H. Sharifi, S. M. Zabihzadeh, M. Ghorbani, Carbohydr. Polym., 194, 384–394 (2018).

27. J. Milano, H. C. Ong, H. H. Masjuki, A. S. Silitonga, W. H. Chen, F. Kusumo, A. H. Sebayang, Energy Convers. Manag., 158, 400–415 (2018).

28. R. Qadir, F. Anwar, F. Batool, M. Mushtaq, A. Jabbar, J. Food Meas. Charact., 13, 697–706 (2019).

29. M. H. Esfe, M. Firouzi, H. Rostamian, M. Afrand, J. Mol. Liq., 261, 14–20 (2018).

30. A. Arslan, E. Topkaya, D. Bingöl, S. Veli, Sustain. Environ. Res., 28, 65–71 (2018).

31. S. Chen, Z. Zeng, N. Hu, B. Bai, H. Wang, Y. Suo, Food Chem., 242, 1–8 (2018).

32. N. S. Sulaiman, R. Hashim, M. H. M. Amini, M. Danish, O. Sulaiman, J. Clean. Prod., 198, 1422–1430 (2018).

33. R. H. Myers, D. C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, second ed., John Wiley &Sons, USA (2002).

34. D. C. Montgomery, Design and Analysis of Experiments, fourth ed., John Wiley and Sons, USA (1996).

35. M. R. Shishehbore, R. Jokar, Anal. Methods, 3, 2815–2821 (2011).


Review

For citations:


Ghorbanpoor S., Shishehbor M.R., Sheibani A., Safaei M., Nazari A. DETERMINATION OF LORAZEPAM IN DRUG FORMULATION AND BIO FLUIDS USING A SPECTROPHOTOMETRIC METHOD AND RESPONSE SURFACE METHODOLOGY. Zhurnal Prikladnoii Spektroskopii. 2020;87(5):854(1)-854(11).

Views: 353


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)